Browse > Article

Bioleaching of Galena by Indigenous Bacteria at Room Temperature  

Park, Cheon-Young (Department of Energy and Resource Engineering, Chosun University)
Kim, Soon-Oh (Department of Earth and Environmental Sciences and Research of Natural Science, Gyeongsang National University)
Kim, Bong-Ju (Department of Energy and Resource Engineering, Chosun University)
Publication Information
Journal of the Mineralogical Society of Korea / v.23, no.4, 2010 , pp. 331-346 More about this Journal
Abstract
This study was carried out to leach valuable metals from galena using indigenous bacteria with no optimum pH conditions at room temperature. Even in these conditions, the rod-shaped indigenous bacteria, ranging from $0.4{\times}0.2{\mu}m$ to $0.5{\times}1.7{\mu}m$, were attached to the surface of the galena. For the 19 days of the bioleaching experiment, the content of Ph, Fe, Zn ions was found to be 347, 222 and 1.7 times higher than that of the control leaching agent, respectively. Numerous hexagonal column crystals were observed on the surface of galena. Those crystals may be formed from the biooxidation of galena by the indigenous bacteria. XRD analysis showed the peaks of anglesite observed in the bioleached galena. It is expected that more valuable elements can be leached out of the galena, if the bacteria is used under optimum pH and temperature conditions in future bioleaching experiments.
Keywords
Indigenous bacteria; bioleaching; galena; angelsite;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Gomez, C., Blazquez, M.L., and Ballester, A. (1999) Bioleaching of Spanish complex sulphide ore bulk concentrate. Minerals Engineering, 12, 93-106.   DOI   ScienceOn
2 Ahonen, L., Hiltunen, P., and Tuovinen, O.H. (1986) The role of pyrrhotite and pyrite in the bacterial leaching of chalcopyrite ores, In: Lawrence, R.W., Branion, R.M.R. and Ebner, H.G. (eds.), Fundamental and Applied Biohydrometallurgy. Elsevier, Amsterdam, 13-22.
3 Attia, Y.A. and El-Zeky, M. (1990) Effects of galvanic interactions of sulfides on extraction of percious metals from refractory complex sulfides by bioleaching. International Journal of Mineral Processing, 30, 99-111.   DOI   ScienceOn
4 Baker, B.J. and Banfield, J.F. (2003) Microbial communities in acid mine drainage. FEMS Microbiology Ecology, 44, 139-152.   DOI   ScienceOn
5 Bhatti, T.M., Bigham, J.M., Carlson, L., and Tuovinen, O.H. (1993) Mineral products of pyrrhotite oxidation by Thiobacillus ferrooxidans, Applied and Environmental Microbiology, 59, 1984-1990.
6 Blancarte-Zurita, M.A., Branion, R.M.R., and Lawrence, R.W. (1986) Application of a shrinking particle model to the kinetics of microbiological leaching. Fundamental and Applied Biohydrometallurgy Proceeding, International Symposium on Biohydrometallurgy, 243-253.
7 Boon, M. (2001) The mechanism of direct(tm) and indirect bacterial oxidation of sulfide minerals. Hydrometallurgy, 62, 67-70.   DOI   ScienceOn
8 Brock, T.D. (1986) Introduction: an overview of the thermophiles. In: Brock, T.D. (eds.), Thermophiles, John Wiley & Sons, 1-16.
9 박천영, 김순오, 김봉주 (2010) ${42^{\circ}C}$에서 토착호산성박테 리아의 황철석 표면에 대한 선택적 부착과 용출특성. 자원환경지질, 43, 109-121.   과학기술학회마을
10 Ahonen, L. and Tuovinen, O.H. (1995) Bacterial leaching of complex sulfide ore samples in bench-scale column reactors. Hydrometallurgy, 37, 1-21.   DOI   ScienceOn
11 박천영, 조강희 (2010) 토착박테리아를 이용한 광산찌꺼기 황철석으로부터 유용금속 이온 용출 특성: 상온에서 칼럼 용출. 한국광물학회지, 23, 251-265.
12 한오형, 박천영, 조강희 (2010) 토착호산성 박테리아를 이용한 황동석 정광에 대한 생물학적 용출 특성-상온에서의 칼럼 용출-. 한국지구시스템공학회지, 47, 678-689.
13 Watling, H.R. (2006) The bioleaching of sulfide minerals with emphasis on copper sulfide-a review. Hydrometallurgy, 84, 81-108.   DOI   ScienceOn
14 Torma, A.E. and Subramanian, K.N. (1974) Selective bacterial leaching of a lead sulfide concentrate. International Journal of Mineral Processing, 1, 125-134.   DOI   ScienceOn
15 Tributsch, H. (2001) Direct versus indirect bioleaching. Hydrometallurgy, 59, 177-185.   DOI   ScienceOn
16 Tuovinen, O.H. (1990) Biological fundamentals of mineral leaching processes. In: Ehrlich, H.L. and Brierley, C.L. (eds.), Microbial Mineral Recovery, McGraw-Hill Publishing Company, 55-77.
17 Tuovinen, O.H., Bhatti, T.M., Bigham, J.M., Hallberg, K.B., Garcia, Jr., O., and Lindstrom, E.B. (1994) Oxidative dissolution of arsenopyrite by mesophilic and moderately thermophilic acidophiles. Applied and Environmental Microbiology, 60, 3268-3274.
18 Uytenbogaardt, W. and Burke, E.A.J. (1973) Tables for Microscopic Identification of Ore Minerals. Elsevier Scientific Publishing Company, 430p.
19 Watling, H.R., Elliot, A.D., Maley, M., van Bronswijk, W., and Hunter, C. (2009) Leaching of a low-grade, copper-nickel sulfide ore. 1. Key parameters impacting on Cu recovery during column bioleaching. Hydrometallurgy 97, 204-212.   DOI   ScienceOn
20 Yelloji Rao, M.K., Natarajan, K.A., and Somasundaran, P. (1992) Effect of biotreatment with Thiobacillus ferrooxidans on the floatability of sphalerite and galena. Mineral & Metallurgical Processing, 9, 95-100.
21 Ramdohr, P. (1980) The ore minerals and their intergrowths. Pergamon Press, 1205p.
22 Rawlings, D.E., Dew, D., and du Plessis, C. (2003) Biomineralization of metal-containing ores and concentrates. TRENDS in Biotechnology, 21, 38-44.   DOI   ScienceOn
23 Sand, W., Gehrke, T., Hallmann, R., and, A. (1995) Sulfur chemistry, biofilm, and the (in)direct attack mechanism- a critical evaluation of bacterial leaching. Applied Microbiology and Biotechnology, 43, 961-966.   DOI
24 Renman, R., Jiankang, W., and Jinghe, C. (2006) Bacterial heap-leaching: practice in Zijinshan copper mine. Hydrometallurgy, 83, 77-82.   DOI   ScienceOn
25 Rojas-Chapana, J.A. and Tributsch, H. (2004) Interfacial activity and leaching patterns of Lptospirillum ferrooxidans on pyrite. FEMS Microbiology Ecology, 47, 19-29.   DOI   ScienceOn
26 Sampson, M.I., Van der Merwe, J.W., Harvey, T.J., and Bath, M.D. (2005) Testing the ability of a low grade sphalerite concentrate to achieve autothermaloty during biooxidation heap leaching. Minerals Engineering, 18, 427-437.   DOI   ScienceOn
27 Sand, W., Gehrke, T., Jozsa, P.G., and Schippers, A. (2001) (Bio)chemistry of bacterial leaching - direct vs indirect bioleaching. Hydrometallurgy, 59, 159-175.   DOI   ScienceOn
28 Silver, M. and Torma, A.E. (1974) Oxidation of metal sulfides by Thiobacillus ferrooxidans grown on different substrates. Canadian Journal of Microbiology, 20, 141-147.   DOI   ScienceOn
29 Silverman, M.P. and Ehrlich, H.L. (1964) Microbial formation and degradation of minerals. Advan. Appl. Microbiol., 6, 153-206.   DOI
30 Tipre, D.R. and Dave, S.R. (2004) Bioleaching process for Cu-Pb-Zn bulk concentrate at high pulp density. Hydrometallurgy, 75, 37-43.   DOI   ScienceOn
31 Torma, A.E. and Bosecjer, K. (1982) Bacterial leaching. Progress in Industrial Microbiology, 16, 77-118.
32 Lottermoser, B. (2007) Mine Wastes. Springer, 304p.
33 Kingma, Jr. J.G. and Silver, M. (1980) Growth of ironoxidizing Thiobacilli in the presence of chalcopyrite and galena. Applied and Environmental Microbiology, 39, 635-641.
34 Konhauser, K. (2007) Introduction to Geomicrobiology, Blackwell Publishing, 425p.
35 Langmuir, D. (1997) Aqueous Environmental Geochemistry. Prentice Hall, 600p.
36 Malouf, E.E. and Prater, J.D. (1961) Role of bacteria in the alteration of sulfide minerals. Journal of Metals, 13, 353-356.
37 Marsden, J. and House, I. (1992) The chemistry of gold extraction. Ellis Horwood, 597p.
38 Mehta, A.P. and Murr, L.E. (1982) Kinetic study of sulfide leaching by galvanic interaction between chalcopyrite, pyrite, and sphalerite in the presence of Thiobacillus ferrooxidans (${30^{\circ}C}$) and a thermophilic microogram (${55^{\circ}C}$). Biotechnology and Bioengineering, 24, 919-940.   DOI   ScienceOn
39 Mousavi, S.M., Taghmaei, S., Vossoughi, M., Jafari, A. and Hoseini, S.A. (2005) Comparation of bioleaching ability of two native mesophilic and thermophilic bacteria on copper recovery from chalcopyrite concentrate in an airlift bioreactor. Hydrometallurgy, 80, 139-144.   DOI   ScienceOn
40 Natarajan, K.A. and Iwasaki, I. (1983) Role of galvanic interactions in the bioleaching of Duluth gabbro coppernickel sulfides. Separation Science and Technology, 18, 1095-1111.   DOI
41 Ohmura, N., Kitamura, K., and Saiki, H. (1993) Selective adhesion of Thiobacillus ferrooxidans to pyrite. Applied Environmental Microbiology, 59, 4044-4050.
42 Garcia, O. Jr., Bigham, J.M., and Tuovinen, O.H. (1995b) Oxidation of galena by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal of Microbiology, 41, 508-514.   DOI   ScienceOn
43 Chaudhury, G.R., Sukla, L.B., and Das, R.P. (1985) Kinetics of bio-chemical leaching of sphalerite concentrate. Metallurgical Transaction B, 16B, 667-670.
44 Craig, J.R. and Vaughan, D.J. (1981). Ore Microscopy and Ore Petrography. John Wiley & Sons, 406p.
45 Faure, G. (1991) Principles and Applications of Inorganic Geochemistry. Macmillan Publishing Company, 626p.
46 Garcia, O. Jr., Bigham, J.M., and Tuovinen, O.H. (995a) Sphalerite oxidation by Thiobacillus ferrooxidans and Thiobacillus thiooxidans. Canadian Journal of Microbiology, 41, 578-584.   DOI
47 Giaveno, A., Lavalle, L., Chiacchiarini, P., and Donati, E. (2007) Airlift reactors: characterization and applications in biohydrometallurgy. In: Donati, E.R. and Sand, W.(eds.), Microbial Processing of Metal Sulfides, Springer, 169-191.