Browse > Article

Synthesis and Structure of the Layered Cathode Material $Li[Li_xMn_{1-x-y}Cr_y]O_2$ for Rechargeable Lithium Batteries  

최진범 (경상대학교 지구환경과학과, 경상대학교 기초과학연구소)
박종완 (한양대학교 재료금속공학부, BK21 과학기술분야 재료사업단)
이승원 (한양대학교 재료금속공학부, BK2l 과학기술분야 재료사업단)
Publication Information
Journal of the Mineralogical Society of Korea / v.16, no.3, 2003 , pp. 223-232 More about this Journal
Abstract
The co-precipitation method is applied to synthesize the cathode material Li[L $i_{x}$M $n_{1-x-y}$C $r_{y}$ ] $O_2$ for lithium rechargeable batteries at $650^{\circ}C$ (CR650) and 8$50^{\circ}C$ (CR850), respectively. Rietveld indices indicate that $R_{wp}$ with respect to $R_{exp}$ ( $R_{wp}$/ $R_{exp}$) are 9.2%/10.1% for CR650 and 15.9%/9.76% for CR850, respectively. $R_{B}$ and S (GofF) shows 10.9%, 8.54% and 1.9, 1.6, respectively. Rietveld structure refinement reveals that layer structure of LiMn $O_2$ (R3m) coexists with lower symmetry of Li[L $i_{1}$3/M $n_{2}$3/] $O_2$ (C2/c) due to superlattice ordering of Li and Mn in metal-transition containing layers. Unit-cell parameters are calculated as a=2.8520(2)$\AA$, c=14.248(2)$\AA$, V=100.40(l)$\AA^3$ for CR650, and a=2.8504(1)$\AA$, c=14.2371(7)$\AA$, V=100.179(8)$\AA^3$ for CR850. Final chemistry is obtained as Li[L $i_{0.35}$M $n_{0.56}$C $r_{0.09}$] $O_2$ (CR650) and Li[L $i_{0.27}$M $n_{0.61}$C $r_{0.13}$] $O_2$ (CR850), respectively.y...y..vely.y...y..
Keywords
lithium rechargeable battery; cathode material; transition-metal; co-precipitation method; Rietveld method; layer structure; superlattice;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lu, Z. and Dahn, J.R. (2001) The effect of Co substitution for Ni on the structure and electrochemical behavior of T2 and $O_2$ structure $Li_{2/3}[Co_xNi_{1/3-x}Mn_{2/3}]O_2$. J. Electrochem. Soc., 148, A237-A240.
2 Massarott, V., Bini, M., Capsoni, D., Altomare, A., and Moliterni, A.G.G. (1997) Ab initio structure determination of $Li_2MnO_3$ from X-ray powder diffraction data. J. Appl. Cryst., 30, 123-127.
3 Arai, H., Tsuda, M., and Sakurai, Y. (2000) Lithium nickelate electordes with enhanced high- temperature performance and thermal stability. J. Powder Sources, 90, 76-81.
4 Young, R.A. (1993) The Rietveld Method. Oxford Univ. Press, Oxford.
5 Paulsen, J.M., Thomas, C.L., and Dahn, J.R. (2000b) $O_2$ structure $Li_{2/3}[Ni_{1/3}Mn_{2/3}]O_2$: A new layered cathode material for rechargeable lithium batteries I. Electrochemical properties. J. Electrochem. Soc., 147, 861-868.
6 Rodríguez-Carvajal, J. (2002) An Introduction to the Program FullProf 2000 (Version July 2001) (PDF electronic manual). Laboratoire Leon Brillouin (CEA-CNRS), France.
7 Lu, Z., MacNeil, D.D., and Dahn, J.R. (2001) Layered cathode materials $Li_{2/3}[Co_xNi_{1/3-x}Mn_{2/3}]O_2$ for lithium-ion batteries, J. Electrochem. Solid-State Lett. 4, A191-A194.
8 Wiles, D.B. and Young, R.A. (1981) A new computer program for Rietveld analysis of X-ray powder diffraction patterns. J. Appl. Cryst., 14, 149-151.
9 Lu, Z., Beaulieu, L.Y., Donaberger, R.A., Thomas, C.L., and Dahn, J.R. (2002) Synthesis, structure, and electrochemical behavior of $Li[Ni_xLi_{1/3-2x/3} Mn_{2/3-x/3}]O_2$. J. Electrochem. Soc., 149, A778-A791.
10 Lu, Z., Donaberger, R.A., and Dahn, J.R. (2000) Superlattice ordering of Mn, Ni, and Co in layered alkali transition metal oxides with P2, P3, and $O_3$ structures. Chem. Mater., 12, 3583-3590.
11 MacNeil, D.D., Christensen, L., Landucci, J., Paulsen, J.M., and Dahn, J.R. (2000) An autocata- lytic mechanism for the reaction of $Li_xCoO_2$ in electrolyte at elevated temperature. J. Electrochem. Soc., 147, 970-979.
12 Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structure. J. Appl. Cryst., 2, 65-71.
13 Sakata, M. and Cooper, J.J. (1979) An analysis of the Rietveld profile refinement method. J. Appl. Cryst., 12, 554-563.
14 Paulsen, J.M. and Dahn, J.R. (2000) $O_2$ structure $Li_{2/3}[Ni_{1/3}Mn_{2/3}]O_2$: A new layered cathode material for rechargeable lithium batteries II. Structure, composition, and properties. J. Electrochem. Soc., 147, 2478- 2485.
15 Roisnel, T. and Rodríguez-Carvajal, J. (2002) Win PLOTR, a Graphic Tool for Powder Diffraction (PDF electronic manual). Laboratoire Leon Brillouin (CEA-CNRS), France.
16 Paulsen, J.M., Larcher, D., and Dahn, J.R. (2000a) O2 structure $Li_{2/3}[Ni_{1/3}Mn_{2/3}]O_2$: A new layered cathode material for rechargeable lithium batteries III. Ion exchange. J. Electrochem. Soc., 147, 2862-2867.   DOI   ScienceOn
17 Post, J.E. and Bish, D.L. (1989) Rietveld refinement of crystal structures using powder X-ray diffraction data. In: Bish, D.L. and Post, J.E. (eds.) Modern Powder X-ray Diffraction, Chap. 9. Review in Mineral., 20, 277-308.
18 Jansen, M. and Hoppe, R. (1973) Zur Kenntnis der Na Strucktur Familie: neue Untersuchungen an Li2Mn $O_3$. Zeit. Anorgan. Allgemeine Chemie, 397, 279-289.
19 Young, R.A. and Wiles, R.A. (1982) Profile shape functions in Rietveld refinements. J. Appl. Cryst., 14, 430-438.
20 Numata, K., Sasaki, C., and Yamanaka, S. (1999) Synthesis and characterization of layer structured solid solutions in the system of $LiCoO_2-Li_2MnO)3$. Solid State Ionics, 117, 257-263.
21 Berar, J.F. and Lelann, P. (1991) E.S.D’s and estimated probable error obtained in Rietveld refinement with local correlations. J. Appl. Cryst., 24, 1-5.