Browse > Article

Biomineralization Processes Using Fly Ash for Carbon Sequestration  

Yul Roh (Environmental Sciences Division, Oak Ridge National Laboratory)
Moon, Ji-Won (Environmental Sciences Division, Oak Ridge National Laboratory)
Yungoo Song (Department of Earth System Sciences, Yonsei University)
Moon, Hi-Soo (Department of Earth System Sciences, Yonsei University)
Publication Information
Journal of the Mineralogical Society of Korea / v.16, no.2, 2003 , pp. 171-180 More about this Journal
Abstract
The objective of this study is to investigate biogeochemical processes to sequester $CO_2$and metals utilizing metal-rich fly ash (MRFA). Microbial conversion of $CO_2$into sparingly soluble carbonate minerals has been studied using MRFA under different $pCO_2$and different bicarbonate concentrations. Scaling from test tube to fermentation vessels (up to 4-L) using metal-reducing bacteria and MRFA has proved successful at sequestering carbon dioxide and metals. $CO_2$sequestration via precipitation processes using MRFA may complement the process of $CO_2$capture from fossil fuel plants while potentially stabilizing fly ash wastes.
Keywords
carbon sequestration; biomineralization; fly ash; metal-reducing bacteria;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bachu, S., Gunter, W.D., and Perkins, E.H. (1994) Aquifer disposal of $CO_2$: Hydrodynamic and mineral trapping. Energy Con. Manag. 35, 269-279.
2 Herzog, H., Golomb, D., and Zemba, S. (1991) Fea sibility, modeling, and economics of sequestering power plant $CO_2$ emissions in the deep ocean. Environ. Prog., 10, 64-74.
3 Liu, S.V., Zhou, J, Zhang, C., Cole, D.R., Gajdarziska-Josifovska, M., and Phelps, T.J. (1997) Thermophilic Fe (III) reducing bacteria from the deep subsurface: The evolutionary implications. Science, 277, 1106-1109.
4 Phelps, T.J., Raione, E.G., White, D.C., and Fliermans, C.B. (1989) Microbial activity in deep subsurface environments. Geomicrobiol. J., 7, 79-91.
5 Stapleton, R.D. Jr., Sabree, Z.L., Palumbo, A.V., Moyer, C., Devol, A., Roh, Y., and Zhou, J.-Z. Metal reduction at in situ temperatures by Shewanella isolates from diverse marine environments. Aquatic Microbial Ecol. (in review).
6 Ye, Q, Y. Roh, Y., Blair, B., Zhou, J., Zhang, C., and, and Fields, M.W. (2003) Isolation and characterization of a novel, metal-reducing bacterium and the implications for alkaline chemotrophy. Appl. Environ. Microbiol. (in review).
7 Kane, R.L. and Klein, D.E. (1997) United States strategy for mitigating global climate change. Energy Con. Manag., 38, S13-S18.
8 Cicerone, D. S., Stewart, A.J., and Roh, Y. (1999) Diel calcite production in an eutrophic spillcontrol basin. Environ. Toxicol. Chem. 18, 2169-2177.
9 Thompson, J.B. and Ferris, F.G. (1990) Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology, 18, 995-998.
10 Roh, Y. and Moon, H.-S. (2001b) Iron reduction by psychrotolerant bacteria isolated from ocean sediment. Geosciences J., 15, 183-190.
11 Roh, Y., Zhang, C.-L., Vali, H., Lauf, R.J., Zhou, J., and Phelps, T.J. (2003) Biogeochemical and environmental factors on iron biomineralization: magnetite and siderite formation. Clays Clay Miner., 51, 83-95.
12 Zhang, C., Vali, H., Romanek, C.S., Phelps, T.J., and Liu, S. (1998) Formation of single-domain magnetite by a thermophilic bacterium. Amer. Min., 83, 1409-1418.
13 Roh. Y., Moon. H.-S., and Song, Y. (2002) Metal reduction and mineral formation by Fe(III)-reducing bacteria isolated from extreme environment. J. Min. Soc. Korea, 15, 231-240.
14 Zhang, C., Liu, S., Phelps, T.J., Cole, D.R., Horita, J., Fortier, S.M., Elless, M., and Valley, J.W. (1997) Physiochemical, mineralogical and isotopic characterization of magnetite-rich iron oxides formed by thermophilic iron reducing bacteria. Geochim. Csomochim. Acta, 61, 4621-4632.
15 Riemer, P.W.F. and Ormerod, W.G. (1995) International perspectives and the results of carbon dioxide capture, disposal, and utilization studies. Energy Con. Manag. 36, 813-818.
16 Roh, Y., McMillan, A.D., Lauf, R.J., and Phelps, T. J. (2001b) Utilization of biomineralization processes with fly ash for carbon sequestration. Proceeding of First National Conference on Carbon Sequestration. Washington, DC (http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/carbon_seq01.html).
17 Roh, Y. and Moon, H.-S. (2001a) Microbial synthesis of cobalt-substituted magnetite nanoparticles by iron reducing bacteria. J. Min. Soc. Korea, 14, 111-118.
18 Zhang, C., Liu, S., Logan, J., Mazumder, R., and Phelps. T.J. (1996) Enhancement of Fe(III), Co(III), and Cr(VI) reduction at elevated temperatures and by a thermophilic bacterium. Appl. Biochem. Biotechnol., 57/58, 923-932.
19 Fredrickson, J.K, Zachara, J.M., Kennedy, D.W., Dong, H., Onstott, T.C., Hinman, N.W., and Li, S. (1998) Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim. Cosmochim. Acta, 62, 3239-3257.
20 Roh, Y. and Moon, H.-S. (2000) Microbial synthesis of magnetite powder by iron reducing bacteria. J. Min. Soc. Korea, 13, 65-72.
21 Roh, Y., Lauf, R. J., McMillan, A.D., Zhang, C., Rawn, C.J., Bai, J., and Phelps, T.J. (2001a) Microbial synthesis and the characterization of some metal-doped magnetite. Solid State Com., 118, 529-534.