Browse > Article

Evolution of Glaucony in the Tertiary Marine Sediments in the Pohang Area, SE Korea  

Byeong-Kook Son (Korea Institute of Geoscience and Mineral Resources (KIGMA))
Sang-Mo Koh (Korea Institute of Geoscience and Mineral Resources (KIGMA))
Hag-Ju Kim (Korea Institute of Geoscience and Mineral Resources (KIGMA))
Publication Information
Journal of the Mineralogical Society of Korea / v.15, no.3, 2002 , pp. 171-181 More about this Journal
Abstract
Glauconization was investigated by morphological and chemical analysis of glaucony from the Pohang Tertiary marine sediments. The glaucony, which is present sparsely in turbidite sandstones, shows two distinct stages in morphology and chemistry. Crystallization of glaucony starts preferentially from the interior of pellet-like grains, then to the outer region of the grains with increasing K and Fe, and decreasing Al. Furthermore, smectite-like glaucony is evolved into illite-like glaucony through interstratified glauconite-smectite with increases in K and Al, and decrease in Fe.
Keywords
glauconization; glaucony; pohang; marine sediments; interstratified glauconite-smectite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Burst, 1. F. (1958a) ‘Glauconite’ pellets: Their mineral nature and applications to stratigraphic interpretaions. AAPG Bulletin, 42, 310-327.
2 Amorosi, A. (1995) Glaucony and sequence stratigraphy: A conceptual framwork of distribution in siliciclastic sequences. Jour. Sed. Res. , 1365,419-425.
3 Burst, J. F. (1958b) Mineral heterogeneity in ‘glauconite‘ pellets. Am. Min., 43, 481-497.
4 Hower, J. (1961) Some factors concerning the nature and origin of glauconite. Am. Min., 46, 313-335.
5 Odin, G. S. (1988) Green marine clays, Oolitic ironstone facies, verdine facies, glaucony facies and celadonite-bearing facies- A comparative study. Developments in Sedimentology 45. Elsevier. 445p.
6 Odin. G. S. and Matter. A (1981) De glauconiarum origine. Sedimentology, 28, 611-641.
7 Odom, E. (1984) Glauconite and celadonite minerals. In: S.W. Bailey (ed.) Illite. Reviews in Mineralogy, Min. Soc. Am., 13, 495-544.
8 Strickler. M. E. and Ferrell Jr.. R. E. (1990) fe substitution for Al in glauconite with increasing diagenesis in the first Wilcox sandstone (Lower Eocene), Livingstone Parish, Louisiana. Clays Clay Min., 38. 69-76.
9 Hower, 1., Eslinger, E.V., Hower, M.E., and Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence. Geol. Soc. Am. Bull., 87, 725-737.
10 Lee, C. H., Choi, S.-W., and Suh, M. (2002) High iron glaucony from the continental shelf of the Yellow Sea, off the Southwestern Korea, Jour, Asian Earth Sci., 20, 507-515.
11 Lee, Y. I. and Paik, I. S. (1997) High alumina glaucony from the Early Ordovician Myngok formation, Korea. Geosci, Jour., L 108-114.
12 Son, B.-K. and Yoshimura, T. (1997) The smectiteto-illite transition in the Koyoshigawaoki well in the Akita sedimentary basin, Northeast .Japan. Clay Sci., 10. 163-184.
13 Son, B.-K. Yoshimura, T., and Fukasawa, H. (2001) Diagenesis of dioctahedral and trioctahedral smectites from alternating beds in Miocene to Pleistocene rocks of the Niigata basin, .Japan. Clays Clay Min., 49, 333-346.
14 Newman. A.C.D. and Brown. G. (1987) The chemical constitution of clays. In: A.C.D. Newman, (ed.) Chemistry of Clays and Clay Minerals, Miner. Soc. Monograph, No.6, Longman Scientific and Technical, 1-128.
15 Son, B.-K. (1996) Mineralogy and diagenesis of intcrstratified liS in the Tertiary Yeonil sediments, SE Korea. Clay Sci., 9, 359-384.