Browse > Article

Synthesis and Crystal Chemistry of New Actinide Pyrochlores  

Sergey V. Yudintsev (한국지질자원연구원 지질연구부)
Publication Information
Journal of the Mineralogical Society of Korea / v.15, no.1, 2002 , pp. 78-84 More about this Journal
Abstract
New pyrochlore-type phases($A_2$$B_2$$O_{7}$) were synthesized in the systems: CaO-C$eO_2$-T$iO_2$, CaO-$UO_2$(T$hO_2$)-Z$rO_2$, CaO-$UO_2$(T$hO_2$)-$Gd_2$$O_3$-T$iO_2$-Z$rO_2$, 및 CaO-T$hO_2$-S$nO_2$. The starting materials were pressed with the pressure of 200~400 MPa and sintered at 1500~ 155$0^{\circ}C$ for 4~8 hours in air and at 1300~ 135$0^{\circ}C$ for 5 ~50 hours under oxygen atmosphere. The products were characterized using XRD, SEM/EDS and TEM. In the bulk compositions of CaCe$Ti_2$$O_{7}$, CaTh$Zr_2$$O_{7}$,($Ca_{0.5}$ Gd$Th_{0.5}$)(ZrTi)$O_{7}$) ($Ca_{0.5}$Gd$Th_{0.5}$)(ZrTi)$O_{7}$, ($Ca_{0.5}$G$dU_{0.5}$)(ZrTi)$O_{7}$ and CaTh$Sn_2$$O_{7}$ , pyrochlore was the major phase, together with other oxide phase $of_2$$O_{7}$ fluorite structure. In the samples with target compositions CaU$Zr_2$$O_2$$Ca_{0.5}$ G$dU_{0.5}$)$Zr_2$T$iO_{7}$ pyrochlore was not identified, but a fluorite-structured phase was detected. The formation factor as the stable phase depended on crystal chemical characteristics of the actinide and lanthanide elements of the system concerned.
Keywords
pyrochlore; actinide (An); brannerite; perovskite;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ewing, R.C. (1999) Nuclear waste forms for actinides. Proc. Nat. Acad. Sci. USA, 96, 3432-3439.
2 Begg, B.D., Vance, E.R., Day, R.A., Hambley, M., and Conradson, S.D. (1997) Plutonium and neptunium incorporation in zirconolite. MRS Symp. Proc., 432, Pittchburg, 325-332.
3 Belov, N.V. (1950) Essays on structural mineralogy. Miner. Iss. L'vov, Geol. Soc., 4, 21-34.
4 Raison, P.E. Haire, R.G. Sato, T., and Ogawa, T. (1999) Fundamental and technological aspects of actinide oxide pyrochlores: Relevance for Immobilization Matrices. MRS Symp. Proc., 556, Warrendale, 3-10.
5 McCauley, R.A. (1980) Structural characteristics of pyrochlore formation. J. Appl, Phys., 5I, 1, 290-294.
6 Isupov, V.A. (1958) Geometrical criterium of the pyrochlore-type structure, Crystallography. 3, 99-100.
7 Ebbinghaus, B.B., VanKonynenburg, R.A., Ryerson F.J., Vance, E.R., Stewart, M.W.A., Jostsons, A.,Allender, J.S., Rankin, T., and Congdon, J. (1998) Ceramic formulaion for the immobilization of plutonium. In: Proceedings of the International Conference HLW, LLW, Mixed Waste Management and Environmental Restoration Working Towards a Cleaner Environment, Tuscon, AZ, CD-Rom version, Rep. N65-4.
8 Aleshin, E. and Roy, R. (1962) Crystal chemistry of pyrochlore. J. Am. Cer. Soc., 45, 18-25.
9 Weber, WJ. and Ewing, R.C. (2000) Plutonium immobilization and radiation effects. Science, 289, 2051-2052.
10 Xu, H. Wang, Y. Putnam R.L., Gutierriez, J., and Navrosky, A. (2000) Microstructure and composition of synroc samples crystallized from a CaCe$Ti_2O_7$ chemical system: HRTEM/EELS Investigation. MRS Symp. Proc. 608, Warrendale, 461-466.
11 Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., 32 (Pt. A), 751-767.
12 Wang, S.X. Begg, B.D., Wang, L.M., Ewing, R.C., Weber, WJ., and Govidan Kutty, K.V. (1999) Radiation stability of gadolinium zirconate a waste form for plutonium disposition. J. Mat. Res., 14, 4470-4473.
13 Vance, E.R., Begg, B.D., Day, R.A., and Ball, CJ. (1995) Zirconolite-rich ceramics for actinide waste. MRS. Symp. Proc. 353, Pittsburgh, 767-774.
14 Chakoumakos, B.C. and Ewing, R.C. (1985) Crystal chemical constraints on the formation of actinide pyrochlores. MRS. Symp. Proc., 44, Pittsburgh, 641-646.
15 Lutze, W. and Ewing R.C. (1988) Summary and evaluation of waste forms. In: Lutze, W. and Ewing, R.C (eds), Radioactive Waste Forms for the Future, North-Holland Physics Publishing,Amsterdam, Netherlands, 699-740.
16 Ewing, R.C., Weber, WJ., and Lutze, W. (1996) Crystalline Ceramics. In: Merz, E.R. and Walter, C.E. (eds.), Waste Forms for the Disposal of Weapons Plutonium, Disposal of Weapon Plutonium, 65-84.
17 Begg, B.D., Hess, NJ., and McCready, D. (2001) Heavy-ion irradiation effects in Gdz(Th.xZrx)07 pyrochlores. J. Nucl, Mat. 289, 188-193.
18 Shoup, S.S. and Bamberger, C.E. (1997) Synthesis of titanate-based hosts for the immobilization of Pu(III) and Am(I1I). MRS Symp. Proc., 465, Pittsburgh, 379-386.