Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2022.32.3.115

A study on the brownish ring of quartz glass crucible for silicon single crystal ingot  

Jung, YoonSung (Division of Materials Science and Engineering Hanyang University)
Choi, Jae Ho (Division of Materials Science and Engineering Hanyang University)
Min, Kyung Won (Division of Materials Science and Engineering Hanyang University)
Byun, Young Min (Division of Materials Science and Engineering Hanyang University)
Im, Won Bin (Division of Materials Science and Engineering Hanyang University)
Noh, Sung-Hun (SGC Energy Co., Ltd.)
Kang, Nam-Hun (SGC Energy Co., Ltd.)
Kim, Hyeong-Jun (Engineering Materials Center, Korea Institute of Ceramic Engineering and Technology)
Abstract
A brown ring (hereinafter referred to as BR) on the inner surface of a quartz glass crucible used in the manufacturing process of a silicon ingot for semiconductor wafers was studied. BR is 20~30 ㎛ in size and has an asymmetric brown ring shape. The size and distribution of BR were different depending on the crucible location, and the size and distribution of BR were the largest and most abundant in the round part with the highest crucible temperature during Si ingot growth. BR contains cristobalite, which has a higher coefficient of thermal expansion than quartz glass, so it is considered that surface cracks appear. The color development of BR and pin holes are presumed to be due to oxygen vacancies.
Keywords
Quartz crucible; Brownish ring; Quartz glass; Color centered; Cristobalite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Jebsen-Marwedel and R. Bruckner, "Glastechnische Fabrikationsfehler. "Pathologische" Ausnahmezustande des Werkstoffes Glas und ihre Behebung; eine Brucke zwischen Wissenschaft, Technologie und Praxis", Springer Berlin Heidelberg, Berlin, Heidelberg (2011) 205.
2 J. Friedrich, W. von Ammon and G. Muller, "Czochralski growth of silicon crystals", Handbook of Crystal Growth. Elsevier (2015) 45.
3 K. Yamahara, X. Huang, S. Sakai, A. Utsunomiya, Y. Tsurita and K. Hoshikawa. "Surface of silica glass reacting with silicon melt: effect of raw materials for silica crucibles", Jpn. J. Appl. Phys. 40 (2001) 1178.   DOI
4 A. Ikari, S. Matsuo, K.T. Kazutaka Terashima and S.K. Shigeyuki Kimura, "In situ observation of etching processes of silica glasses by silicon melts", Jpn. J. Appl. Phys. 35 (1996) 3547   DOI
5 Z. Liu and T. Carlberg, "Reactions between liquid silicon and vitreous silica", J. Mater. Res. 7 (1992) 352.   DOI
6 A. Hirsch, M. Schulze, F. Sturm, M. Trempa, C. Reimann and J. Friedrich, "Factors influencing the gas bubble evolution and the cristobalite formation in quartz glass Cz crucibles for Czochralski growth of silicon crystals", J. Cryst. Growth 570 (2021) 126231.   DOI
7 C. Wu, B. Yuan and Y. Li, "Flow instabilities of coupled rotation and thermal-solutal capillary convection of binary mixture in Czochralski configuration", Crystals 9 (2019) 72.   DOI
8 M. Heili, B. Poumellec, E. Burov, C. Gonnet, C.L. Losq, D.R. Neuville and M. Lancry, "The dependence of Raman defect bands in silica glasses on densification revisited", J. Mater. (2016) 1659.
9 F. Auento, "Stability, lattice parameters, and thermal expansion of β-cristobalite", Am. Min. 51 (1966) 1167.
10 G. Wypych, "Handbook of Fillers", 4th ed. (Elsevier, Amsterdam, 2016) 107.
11 I.P. Swalnson and M.T. Dove, "On the thermal expansion of β-cristobalite", Phys. Chem. Miner. 22 (1995) 61.   DOI
12 M.K. Kim, B.Y. Jang, J.S. Lee, J.S. Kim and S. Nahm, "Microstructures and electrochemical performances of nano-sized SiOx (1.18 ≤ x ≤ 1.83) as an anode material for a lithium (Li)-ion battery", J. Power Sources 244 (2013) 115.   DOI
13 U Ekhult and T. Carlberg, "Oxygen solubility in liquid silicon in equilibrium with SiO and SiO2", J. Electrochem. Soc. 136 (1989) 551.   DOI
14 G.S. Henderson, D.R. Neuville, B. Cochain and L. Cormier, "The structure of GeO2-SiO2 glasses and melts: A Raman spectroscopy study", J. Non. Cryst. Solids 335 (2009) 468.
15 H.J. Jeon, H. Park, G. Koyyada, S. Alhammadi and J.H. Jung, "Optimal cooling system design for increasing the crystal growth rate of single-crystal silicon ingots in the czochralski process using the crystal growth simulation", Processes 8 (2020) 1077.   DOI
16 J. Yu, L. Zhang, T. Shen, L. Zhang and Y.-H. Li, "Numerical simulation of thermal-solutal capillary-buoyancy flow of Ge1-xSix single crystals driven by surface-tension and rotation in a czochralski configuration", Crystals 9 (2019) 217.   DOI
17 S. Agnello, D. Di Francesca, A. Alessi, G. Iovino, M. Cannas, S. Girard, A. Boukenter and Y. Ouerdane, "Interstitial O2 distribution in amorphous SiO2 nanoparticles determined by Raman and photoluminescence spectroscopy", J. Appl. Phys. 114 (2013) 104305.   DOI
18 T. Deschaines, J. Hodkiewicz and P. Henson, "Characterization of amorphous and microcrystalline silicon using Raman spectroscopy", Advanstar Communications Inc. (2009).
19 A.N. Trukhin, K. Smits, J. Jansons and A. Kuzmin, "Luminescence of polymorphous SiO2", Radiat Meas 90 (2016) 6.   DOI
20 S. Noh, N. Kang, H. Yun and H.-J. Kim, "Status of quartz glass crucible", Ceramist 22 (2019) 452.   DOI
21 K. Watanabe, K. Tanaka and M. Hasebe, "The ESR investigation of brownish ring at the surface of quartz crucible used for Cz-Si crystal growth", Chem. Lett. 25 (1996) 627.   DOI
22 R.L. Hansen, L.E. Drafall, R.M. McCutchan, J.D. Holder, L.A. Allen and R.D. Shelley, "Surface-treated crucibles for improved zero dislocation performance", U.S. Patent No 5,976 (1999) 247.
23 H. Imai and H. Hirashima, "Evolution of cristobalite clusters on silica glass surfaces in molten silicon", J. Electrochem. Soc. 147 (2000) 1182.   DOI