Browse > Article
http://dx.doi.org/10.6111/JKCGCT.2016.26.4.150

Synthesis and characterization of potassium titanate whisker by flux method  

Choi, Yeon-Bin (Department of Advanced Materials Science and Engineering, Changwon National University)
Son, Jeong-hun (Department of Advanced Materials Science and Engineering, Changwon National University)
Bae, Dong Sik (Department of Advanced Materials Science and Engineering, Changwon National University)
Abstract
Method for synthesizing a $K_2Ti_6O_{13}$ whisker is a solid-state method, hydrothermal synthesis method, calcination method, flux method, slow-cooling method, melting method, kneading-drying-calcination method, sol-gel method etc. $K_2Ti_6O_{13}$ whisker have been synthesized by a flux method. The average size and distribution of the synthesized $K_2Ti_6O_{13}$ whisker can be controlled by a kind of potassium precursors and reaction temperature and time. The average size of the synthesized $K_2Ti_6O_{13}$ whisker was about in the size range of 500 nm to $2{\mu}m$. The effect of synthesis parameters, such as the molar ratio of KOH to $TiO_2$, pH, reaction temperature and time, are discussed. The synthesized $K_2Ti_6O_{13}$ whisker were characterized by x-ray diffraction analysis (XRD), field emission scanning electron microscopy (FE-SEM).
Keywords
Synthesis; Nanostructure; Potassium titanate; Microstructure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M.A. Siddiquia, V.S. Chandel and A. Azam, "Comparative study of potassium hexatitanate ($K_2Ti_6O_{13}$) whiskers prepared by sol-gel and solid state reaction routes", Appl. Surf. Sci. 258 (2012) 7354.   DOI
2 T. Endo, H. Nagayama, T. Sato and M. Shimada, "Crystal growth of poatassium titanates in the system $K_2O-Fe_2O_3-TiO_2$", J. Cryst. Growth 78 (1986) 423.   DOI
3 X. Zhang, S. Tang, L Zhai, J. Yu, Y. Shi and Y. Du, "A simple molten salt method to synthesize single-crystalline potassium titanate nanobelts", Mater Lett. 63 (2009) 887.   DOI
4 X. Wang, S.J. Liu, Y.M. Qi, L.C. Zhao and C.X. Cui, "Behavior of potassium titanate whisker in simulated body fluid", Mater Lett. 135 (2014) 139.   DOI
5 X. Meng, D. Wang, J. Liu, B. Lin and Z. Fu, "Effects of titania different phases on the microstructure and properties of $K_2Ti_6O_{13}$ nanowires", Solid State Comm. 137 (2006) 146.   DOI
6 Q. Wang, Z. Guo and J.S. Chung, "Formation and structural characterization of potassium titanates and the potassium ion exchange property", Mater Res Bull. 44 (2009) 1973.   DOI
7 J.K. Lee, K.H. Lee and H. Kim, "Microstructural evolution of potassium titanate whiskers during the synthesis by the calcination and slow-cooling method", J. Mater Sci. 31 (1996) 5493.   DOI
8 Q. Wang, Q. Guo, H. Wang and B. Li, "Molten salt synthesis of crystalline photocatalytic potassium octatitanate whiskers from KCl melt", Mater Lett. 155 (2015) 38.   DOI
9 H. Manyu, L. Yimin, L. Chunguang and L. Xia, "Structural, electronic and elastic properties of potassium hexatitanate crystal from first-principles calculations", Phys. B Condens Matter. 407(2012) 2811.   DOI
10 S.O. Kang, H.S. Jang, Y.I. Kim, K.B. Kim and M.J. Jung, "Study on the growth of potassium titanate nanostructures prepared by sol-gel-calcination process", Mater Lett. 61 (2007) 473.   DOI
11 Y. Li, H. Yu, Y. Yang, F. Zheng, H. Ni, M. Zhang and M. Guo, "Synthesis of potassium hexatitanate whisker with high thermal stability from Ti-bearing electric arc furnace molten slag", Ceram Int. 42 (2016)11294.   DOI
12 T. Zaremba and D. Witkowska, "Methods of manufacturing of potassium titanate fibres and whiskers. A review", Mater Sci. 28 (2010) 25.
13 N. Bao, X. Feng, L. Shen and X. Lu, "Calcination syntheses of a series of potassium titanates and their morphologic evolution", Cryst. Growth Des. 2 (2002) 437.   DOI
14 N. Bao, X. Feng, X. Lu, L. Shen and K. Yanagisawa, "Low-temperature controllable calcination syntheses of Potassium dititanate", AIChE J. 50 (2004) 1568.   DOI
15 A.V. Gorokhovsky, J.I.E. Garcia, T.S. Monjarás and C.A.G. Chavarria, "Synthesis of potassium polytitanate precursors by treatment of $TiO_2$ with molten mixtures of $KNO_3$ and KOH", J. Eur. Ceram Soc. 24 (2004) 3541.   DOI
16 L. Xu and L. Cheng, "Environmentally friendly growth of single-crystalline $K_2Ti_6O_{13}$ nanoribbons from KCl flux", Mater Char. 61 (2010) 245.   DOI
17 S. Takaya, Y. Lu, S. Guan, K. Miyazawa, H. Yoshida and H. Asanuma, "Fabrication of the photocatalyst thin films of nano-structured potassium titanate by molten salt treatment and its photocatalytic activity", Surf Coating Tech. 275 (2015) 260.   DOI
18 L. Shen, N. Bao, Y. Zheng, A. Gupta, T. An and K. Yanagisawa, "Hydrothermal splitting of titanate fibers to single-crystalline $TiO_2$ nanostructures with controllable crystalline phase, morphology, microstructure, and photocatalytic activity", J. Phys. Chem. C112 (2008) 8809.
19 J. Park, "Photocatalytic activity of hydroxyapatite-precipitated potassium titanate whiskers", J. Alloy Comp. 492 (2010) 57.   DOI
20 R. Luo, Y. Ni, J. Li, C. Yang and S. Wang, "The mechanical and thermal insulating properties of resinderived carbon foams reinforced by $K_2Ti_6O_{13}$ whiskers", Mater Sci. Eng. 528 (2011) 2023.   DOI
21 Y. Liu, T. Qi and Y. Zhang, "A novel way to synthesize potassium titanates", Mater Lett. 60 (2006) 203.   DOI
22 N Bao, L. Shen, X. Feng and X. Lu, 'High quality and yield in potassium titanate whiskers synthesized by calcination from hydrous titania", J. Am. Ceram. Soc. 87 (2004) 326.   DOI
23 Y Cao, K. Zhu, Q. Wu, Q. Gu and J. Qiu, "Hydrothermally synthesized barium titanate nanostructures from $K_2Ti_4O_9$ precursors: Morphology evolution and its growth mechanism", Mater Res. Bull. 57 (2014) 162.   DOI