Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.3.153

Synthesis of ZnO/Zn(OH)2 Nanosheets Using Ionic Layer Epitaxy  

Jeong, Gyu Hyun (School of Materials Science and Engineering, Gyeongsang National University)
Nam, Dong Hyun (School of Materials Science and Engineering, Gyeongsang National University)
Ryu, Gyeong Hee (School of Materials Science and Engineering, Gyeongsang National University)
Publication Information
Korean Journal of Materials Research / v.32, no.3, 2022 , pp. 153-160 More about this Journal
Abstract
ZnO nanosheets have been used for many devices and antibacterial materials with wide bandgap and high crystallinity. Among the many methods for synthesizing ZnO nanostructures, we report the synthesis of ZnO/Zn(OH)2 nanosheets using the ionic layer epitaxy method, which is a newly-developed bottom-up technique that allows the shape and thickness of ZnO/Zn(OH)2 nanosheets to be controlled by temperature and time of synthesis. Results were analyzed by scanning electron microscopy and atomic force microscopy. The physical and chemical information and structural characteristics of ZnO/Zn(OH)2 nanosheets were compared by X-ray photoelectron spectroscopy and X-ray diffraction patterns after various post-treatment processes. The crystallinity of the ZnO/Zn(OH)2 nanosheets was confirmed using scanning transmission electron microscopy. This study presents details of the control of the size and thickness of synthesized ZnO/Zn(OH)2 nanosheets with atomic layers.
Keywords
$ZnO/Zn(OH)_2$; nanosheeets; ionic layer epitaxy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. K. Zak, W. H. A. Majid, H. Z. Wang, R. Yousefi, A. M. Golsheikh and Z. F. Ren, Ultrason. Sonochem., 20, 395 (2013).   DOI
2 S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev and A. Kis, Nat. Rev. Mater., 2, 17033 (2017).   DOI
3 T. Hu, X. Mei, Y. Wang, X. Weng, R. Liang and M. Wei, Sci. Bull., 64, 1707 (2019).   DOI
4 X. Yin, Y. Shi, Y. Wei, Y. Joo, P. Gopalan, I. Szlufarska and X. Wang, Langmuir, 33, 7708 (2017).   DOI
5 F. Wang, X. Yin and X. Wang, Extreme Mech. Lett., 7, 64 (2016).   DOI
6 V. W. Brar, A. R. Koltonow and J. Huang, ACS Photonics, 4, 407 (2017).   DOI
7 R. F. Service, Science, 276, 895 (1997).   DOI
8 H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu and D. Que, Nanotechnology, 15, 622 (2004).   DOI
9 V. C. Sousa, A. M. Segadaes, M. R. Morelli and R. H. G. A. Kiminami, Int. J. Inorg. Mater., 1, 235 (1999).   DOI
10 D. S. King and R. M. Nix, J. Catal., 160, 76 (1996).   DOI
11 A. Qurashi, N. Tabet, M. Faiz and T. Yamzaki, Nanoscale Res. Lett., 4, 948 (2009).   DOI
12 S.-M. Li, L.-X. Zhang, M.-Y. Zhu, G.-J. Ji, L.-X. Zhao and J. Y. L.-J. Bie, Sensors Actuators B, 249, 611 (2017).   DOI
13 R. Al-Gaashani, S. Radiman, A. R. Daud, N. Tabet and Y. Al-Douri, Ceram. Int., 39, 2283 (2013).   DOI
14 X. Yin, Q. Chen, P. Tian, P. Zhang, Z. Zhang, P. M. Voyles and X. Wang, Chem. Mater., 30, 3308 (2018).   DOI
15 D. X. Ju, H. Y. Xu, J. Zhang, J. Guo and B. Cao, Sensors Actuators B, 201, 444 (2014).   DOI
16 X. Li, G. He, G. Xiao, H. Liu and M. Wang, J. Colloid Interface Sci., 333, 465 (2009).   DOI
17 P. J. P. Espitia, N. D. F. F. Soares, J. S. D. R. Coimbra, N. J. D. Andrade, R. S. Cruz and E. A. A. Medeiros, Food Bioprocess Technol., 5, 1447 (2012).   DOI
18 K. Keis, E. Magnusson, S.-E. Lindquist, A. Hagfeldt and H. Lindstrom, Sol. Energy Mater. Sol. Cells, 73, 51 (2002).   DOI
19 W. J. E. Beek, M. M. Wienk and R. A. J. Janssen, Adv. Mater., 16, 1009 (2004).   DOI
20 X. J. Zheng, X. C. Cao, J. Sun, B. Yuan, Q. H. Li, Z. Zhu and Y. Zhang, Nanotechnology, 22, 435501 (2011).   DOI
21 G. Ficociello, E. Zanni, S. Cialfi, C. Aurizi, G. Biolcati, C. Palleschi, C. Talora and D. Uccelletti, Biochim. Biophys. Acta, 1863, 2650 (2016).   DOI
22 D. Ehrentraut, H. Sato, Y. Kagamitani, H. Sato, A. Yoshikawa and T. Fukuda, Prog. Cryst. Growth Charact. Mater., 52, 280 (2006).   DOI
23 T. Ivanova, A. Harizanova, T. Koutzarova and B. Vertruyen, Mater. Lett., 64, 1147 (2010).   DOI
24 C. C. Chen, P. Liu and C. H. Lu, Chem. Eng. J., 144, 509 (2008).   DOI
25 S. Baruah and J. Dutta, Sci. Technol. Adv. Mater., 10, 013001 (2009).   DOI
26 S.-Y. Pung, K.-L. Choy and X. Hou, J. Cryst. Growth, 312, 2049 (2010).   DOI
27 E. Zanni, C. Laudenzi, E. Schifano, C. Palleschi, G. Perozzi, D. Uccelletti and C. Devirgiliis, Hindawi Publishing Corporation Biomed. Res. Int., 2015, 12 (2015).
28 M. Salavati-Niasari, F. Davar and A. Khansar, J. Alloys Compd., 509, 61 (2011).   DOI
29 E. Zanni, C. R. Chandraiahgari, G. D. Bellis, M. R. Montereali, G. Armiento, P. Ballirano, A. Polimeni, M. S. Sarto and D. Uccelletti, Nanomaterials, 6, 179 (2016).   DOI
30 A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan and D. Mohamad, Nano Micro Lett., 7, 219 (2015).   DOI
31 K. Malachova, P. Prausb, Z. Rybkova and O. Kozak, Appl. Clay Sci., 53, 642 (2011).   DOI
32 W. J. E. Beek, M. M. Wienk and R. A. J. Janssen, J. Mater. Chem., 15, 2985 (2005).   DOI
33 X. Yin, Y. Shi, Y. Wei, Y. Joo, P. Gopalan, I. Szlufarska and X. Wang, Langmuir, 33, 7708 (2017).   DOI
34 Y. Wang, Y. Shi, Z. Zhang, C. Carlos, C. Zhang, K. Bhawnani, J. Li, J. Wang, P. M. Voyles, I. Szlufarska and X. Wang, Chem. Mater., 31, 9040 (2019).   DOI