Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.3.125

Effect of Sulfation on Physicochemical Properties of ZrO2 and TiO2 Nanoparticles  

Wijaya, Karna (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University)
Pratika, Remi Ayu (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University)
Fitri, Edhita Rahmawati (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University)
Prabani, Prisnu Fadilah (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University)
Candrasasi, Yufinta (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University)
Saputri, Wahyu Dita (Research Center for Physics, National Research and Innovation Agency (BRIN))
Mulijani, Sri (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung)
Patah, Aep (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung)
Wibowo, Arief Cahyo (Department of Applied Sciences, College of Arts and Sciences, Abu Dhabi University)
Publication Information
Korean Journal of Materials Research / v.32, no.3, 2022 , pp. 125-131 More about this Journal
Abstract
Effect of sulfation processes on the physicochemical properties of ZrO2 and TiO2 nanoparticles were thoroughly investigated. SO4/ZrO2 and SO4/TiO2 catalysts were synthesized to identify the acidity character of each. The wet impregnation method of ZrO2 and TiO2 nanoparticles was employed using H2SO4 with various concentrations of 0.5, 0.75, and 1 M, followed by calcination at 400, 500, and 600 ℃ to obtain optimum conditions of the catalyst synthesis process. The highest total acidity was found when using 1 M SO4/ZrO2-500 and 1 M SO4/TiO2-500 catalysts, with total acidity values of 2.642 and 6.920 mmol/g, respectively. Sulfation increases titania particles via agglomeration. In contrast, sulfation did not practically change the size of zirconia particles. The sulfation process causes color of both catalyst particles to brighten due to the presence of sulfate. There was a decrease in surface area and pore volume of catalysts after sulfation; the materials' mesoporous structural properties were confirmed. The 1 M SO4/ZrO2 and 1 M SO4/TiO2 catalysts calcined at 500 ℃ are the best candidate heterogeneous acid catalysts synthesized in thus work.
Keywords
sulphated; zirconia; titania; acidity; calcination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. H. Sarvari and E. Sodagar, C. R. Chim., 16, 229 (2013).   DOI
2 A. R. Zarubica, M. N. Miljkovic, E. E. Kiss and G. C. Boskovic, React. Kinet. Catal. Lett., 90, 145 (2007).   DOI
3 E. P. Susi, K. Wijaya, Wangsa, R. A. Pratika and P.L. Hariani., Asian J. Chem., 32, 2773 (2020).   DOI
4 X. Mo, E. Lotero, C. Lu, Y. Liu and J. G. Goodwin, Catal. Lett., 123, 1 (2008).   DOI
5 S. Wenping and L. Jianwei, React. Kinet., Mech. Catal., 111, 215 (2014).   DOI
6 R. A. Pratika, K. Wijaya and W. Trisunaryanti, J. Environ. Chem. Eng., 9, 106547 (2021).   DOI
7 K. J. A Raj and B. Viswanathan, ACS Appl. Mater. Interfaces, 1, 2462 (2019).
8 X. Song and A. Sayari, Catal. Rev.: Sci. Eng., 38, 329 (1996).   DOI
9 C. Carlucci, L. Degennaro and R. Luisi, Catalysts, 9, 75 (2019).   DOI
10 M. S. Ore, K. Wijaya, W. Trisunaryanti, W. D. Saputri, E. Heraldy, M. W. Yuwana, P. L. Hariani, A. Budiman and S. Sudiono, J. Environ. Chem. Eng., 8, 104205 (2020).   DOI
11 M. Hino, M. Kurashige, H. Matsuhashi and K. Arata, Thermochim. Acta, 441, 35 (2006).   DOI
12 S. J. Sekewael, R. A. Pratika, L. Hauli, A. K. Amin, M. Utami and K. Wijaya, Catalysts, 12, 191 (2022).   DOI
13 K. Wijaya, M. A. Kurniawan, W. D. Saputri, W. Trisunaryanti, M. Mirzan, P. L. Hariani and A. D. Tikoalu, J. Environ. Chem. Eng., 9, 105399 (2021).   DOI
14 V. J. L. Ropero, A. A. Perez, R. Gomez and N. M. Gomez, Appl. Catal., A, 379, 24 (2010).   DOI
15 L. Hauli, K. Wijaya and R. Armunanto, Orient. J. Chem., 34, 1559 (2018).   DOI
16 M. Utami, K. Wijaya and W. Trisunaryati, Key. Eng. Mater., 757, 131 (2017).   DOI
17 A. B. Fadhil, A. M. Aziz, M. H. Al-Tamer, Energy Conversion Manag., 108, 255 (2016).   DOI
18 M. Busto, C. R. Vera and J. M. Grau, Fuel Process. Technol., 92, 1675 (2011).   DOI
19 X. H. Lin, X. J. Yin, J. Y. Liu and S. F. Y Li, Appl. Catal., B, 203, 731 (2017).   DOI
20 J. Gardi, A. Hassanpour, X. Lai and M. H. Ahmed, Appl. Catal., A, 527, 81 (2016).   DOI
21 A. Sinhamahapatra, N. Sutradhar, M. Ghosh, H. C. Bajaj and A. B. Panda, Appl. Catal., A, 402, 87 (2011).   DOI
22 A. Patel, V. Brahmkhatri and N. Singh, Renew. Energy, 51, 227 (2013).   DOI