Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.2.94

Characteristics of Perovskite Solar Cells with ZnO Coated on Mesoporous TiO2 as an Electron Transfer Layer  

Ahn, Joonsub (Department of Advanced Chemicals & Engineering, Chonnam National University)
Song, Jaegwan (Research&Development Department, PMC Tech)
Han, Eunmi (School of Chemical Engineering, Chonnam National University)
Publication Information
Korean Journal of Materials Research / v.32, no.2, 2022 , pp. 94-97 More about this Journal
Abstract
We fabricated 3 types of ETL, mp TiO2, ZnO, and ZnO coated on mp TiO2(ZMT) to compare the photoelectric conversion efficiency (PCE) and fill factor (FF) of Perovskite solar cells. The structure of the cells was FTO/ETL/Perovskite (CH3NH3PbI3)/spiro-MeOTAD/Ag. SEM morphology assessment of the ETLs showed that mp TiO2 was porous, ZnO was flat, and the ZMT porous surface was filled with a thin layer. Via XRD measurements, the crystal structures of mp TiO2 and ZnO ETL were found to be anatase and wurtzite, respectively. The XPS patterns showing energy bonding of mp TiO2, ZnO, and ZMT O 1s confirmed these materials to be metal oxides such as ETL. The electrical characteristics of the Perovskite solar cells were measured using a solar simulator. Perovskite solar cells with ZMT ETL showed showed PCE of 10.29 % than that of conventional mp TiO2 ETL devices. This was considered a result of preventing Perovskite from seeping into the ETL and preventing recombination of electrons and holes.
Keywords
electron transfer layer; photoelectric conversion efficiency; perovskite solar cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. A. Green, E. D. Dunlop, D. H. Levi, J. H. Ebinger, M. Yosita and A. W. Y. Ho-Baillie, Prog. Photovolt.: Res. Appl., 27, 565 (2019).   DOI
2 H. Chen, X. Pan, W. Liu, M. Cai, D. Kou, Z. Huo, X. Fang and S. Dai, Chem. Commun., 49, 7277, (2013).   DOI
3 M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix and N. Mathews, Chem. Commun., 49, 11089 (2013).   DOI
4 D. Liu and T. L. Kelly, Nat. Photonics, 8, 133 (2014).   DOI
5 S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo and S. I. Seok, Energy Environ. Sci., 7, 2614 (2014).   DOI
6 E. Edri, S. Kirmayer, D. Cahen and G. Hodes, J. Phys. Chem. Lett., 4, 897 (2013).   DOI
7 E. Edri, S. Kirmayer, M. Kulbak, G. Hodes and D. Cahen, J. Phys. Chem. Lett., 5, 429 (2014).   DOI
8 J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Gratzel and S. I. Seok, Nat. Photonics, 7, 486 (2013).   DOI
9 D. Y. Son, J. H. Im, H. S. Kim and N. G. Park, J. Phys. Chem. C, 118, 16567 (2014).   DOI
10 M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science, 338, 643 (2012).   DOI
11 B. Cai, Y. Xing, Z. Yang, W. H. Zhang and J. Qiu, Energy Environ. Sci., 6, 1480 (2013).   DOI
12 H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Gratzel and N. G. Park, Nano Lett., 13, 2412 (2013).   DOI
13 H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. H. Yum, J. E. Moser, M. Gratzel and N. G. Park, Sci. Rep., 2, 591 (2012).   DOI
14 J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, p.45, 73, 89, Eds. J. Chastain, Perkin-Elmer Corporation, Minnesota, USA (1992).
15 E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T. Y. Yang, J. H. Noh and J. W. Seo, Nature, 567, 511 (2019).   DOI
16 J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, Nanoscale, 3, 4088 (2011).   DOI