Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.1.1

Microwave Assisted Synthesis of Graphene-Bi2MoO6 Nanocomposite as Sono-Photocatalyst  

Tang, Jia-Yao (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology)
Zhu, Lei (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology)
Fan, Jia-Yi (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology)
Sun, Chen (Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology)
Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
Publication Information
Korean Journal of Materials Research / v.32, no.1, 2022 , pp. 1-8 More about this Journal
Abstract
In this investigation, Bi2MoO6 deposited graphene nanocomposite (BMG) was synthesized using a simple microwave assisted hydrothermal synthesis method. The synthesized BMG nanocomposite was characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray analysis, and photocurrent analysis. The study revealed that the catalysts prepared have high crystalline nature, enhanced light responsive property, high catalytic activity, and good stability. XRD results of BMG composite exhibit a koechlinite phase of Bi2MoO6. The surface property is shown by SEM and TEM, which confirmed a homogenous composition in the bulk particles of Bi2MoO6 and nanosheets of graphene. The catalytic behavior was investigated by the decomposition of Rhodamine B as a standard dye. The results exhibit excellent yields of product derivatives at mild conditions under ultrasonic/visible light-medium. Approximately 1.6-times-enhanced sono-photocatalytic activity was observed by introduction of Bi2MoO6 on graphene nanosheet compared with control sample P25 during 50 min test.
Keywords
graphene; microwave; $Bi_2MoO_6$; sonophotocatalytic activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang and D. D. Sun, Adv. Funct. Mater., 20, 4175 (2010).   DOI
2 P. Wang, Y. Ao, C. Wang, J. Hou and J. Qian, Carbon, 50, 5256 (2012).   DOI
3 J. Saien, H. Delavari and A. R. Solymani, J. Hazard. Mater, 177, 1031 (2010).   DOI
4 M. Kubo, K. Matsuoka, A. Takahashi, N. ShibasakiKitakawa and T. Yonemoto, Ultrason. Sonochem., 12, 263 (2005).   DOI
5 N. Wang, L. Zhu, M. Wang, D. Wang and H. Tang, Ultrason. Sonochem., 17, 78 (2010).   DOI
6 X. Chen and S. S. Mao, Chem. Rev., 107, 2891 (2007).   DOI
7 Y. Shimodaira, H. Kato, H. Kobayashi and A. Kudo, J. Phys. Chem. B, 110, 17790 (2006).   DOI
8 X. Zhao, T. G. Xu, W. Q. Yao and Y. F. Zhu, Appl. Surf. Sci., 255, 8036 (2009).   DOI
9 Y. P. Zhang and C. X. Pan, J. Mater. Sci., 46, 2622 (2011).   DOI
10 F. Zhou, R. Shi and Y. Zhu, J. Mol. Catal. A: Chem., 340, 77 (2011).   DOI
11 J.-P. Zou, J. Ma, Q. Huang, S.-L. Luo, J. Yu, X.-B. Luo, W.-L. Dai, J. Sun, G.-C. Guo, C.-T. Au and S. L. Suib, Appl. Catal., B, 156-157, 447 (2014).   DOI
12 J. Wang, W, Sun, Z. Zhang, Z. Xing, R. Xu, R. Li, Y. Li and X. Zhang, Ultrason. Sonochem., 15, 301 (2008).   DOI
13 T. J. Al-Musawi, P. Rajiv, N. Mengelizadeh, I. A. Mohammed and D. Balarak, J. Environ. Manage., 292, 112777 (2021).   DOI
14 W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).   DOI
15 M. Khairy, E. M. Naguib and M. M. Mohamed, J. Photochem. Photobiol. Chem., 396, 112507 (2020).   DOI
16 A. Khataee, T. S. Rad, S. Nikzat, A. Hassani, M. H. Aslan, M. Kobya and E. Demirbas, Chem. Eng. J., 375, 122102 (2019).   DOI
17 M. M. Mohamed, M. A. Ghanem, M. Khairy, E. Naguib and N. H. Alotaibi, Appl. Surf. Sci., 487, 539 (2019).   DOI
18 Y. Min, F.-J. Zhang, W. Zhao, F. Zheng, Y. Chen and Y. Zhang, Chem. Eng. J., 209, 215 (2012).   DOI
19 X.-Y. Zhang, H.-P. Li, X.-L. Cui and Y. Lin, J. Mater. Chem., 20, 2801 (2010).   DOI
20 H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 4, 380 (2010).   DOI
21 A. B. Bourlinos, D. Gournis, D. Petridis, T. Szabo, A. Szeri and I. Dekany, Langmuir, 19, 6050 (2003).   DOI
22 J. W. Lekse, A. M. Pischera and J. A. Aitken, Mater. Res. Bull., 42, 395 (2007).   DOI
23 M. Sun, Y. Yao, W. Ding and S. Anandan, J. Alloys Compd., 820, 153172 (2020).   DOI
24 K. Gotoh, T. Kinumoto, E. Fujii, A. Yamamoto, H. Hashimoto, T. Ohkubo, A. Itadani, Y. Kuroda and H. Ishida, Carbon, 49, 1118 (2011).   DOI
25 Z.-D. Meng, L. Zhu, J.-G. Choi, C.-Y. Park and W.-C. Oh, Nanoscale. Res. Lett., 6 459 (2011).   DOI
26 L. Ghalamchi and S. Aber, Mater. Chem. Phys., 256, 123649 (2020).   DOI
27 N. Shimizu, C. Ogino, M. D. Farshbaf and T. Murata, Ultrason. Sonochem., 14, 184 (2007).   DOI
28 K. Zhang and W.-C. Oh, Bull. Korean Chem. Soc., 31, 1589 (2010).   DOI
29 C. Burda, Y. Lou, X. Chen, A. C. S. Samia, J. Stout and J. L. Gole, Nano Lett., 3, 1049 (2003).   DOI
30 X. Zhang, M. Zhou and L. Lei, Carbon, 43, 1700 (2005).   DOI
31 O. K. Dalrymple, E. Stefanakos, M. A. Trotz and D. Y. Goswami, Appl. Catal., B, 98, 27 (2010).   DOI
32 J. Ricote, L. Pardo, A. Castro and P. Millan, J. Solid State Chem., 160, 54 (2001).   DOI
33 Y. Man, R. L. Zong and Y. F. Zhu, Acta Phys. Chim. Sin., 23, 1671 (2007).   DOI
34 O. Akhavan, ACS Nano, 4, 4174 (2010).   DOI