Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.3.122

Effect of Silane Coupling Treatment on the Joining and Sealing Performance between Polymer and Anodized Aluminum Alloy  

Lee, Sung-Hyung (Gakko hojin Kitahara gakuen)
Yashiro, Hitoshi (Department of Chemistry and Biological Science, Iwate University)
Kure-Chu, Song-Zhu (Materials Function and Design, Nagoya Institute of Technology)
Publication Information
Korean Journal of Materials Research / v.31, no.3, 2021 , pp. 122-131 More about this Journal
Abstract
In the fabrication of joined materials between anodized aluminum alloy and polymer, the performance of the metal-polymer joining is greatly influenced by the chemical properties of the oxide film. In a previous study, the dependence of physical joining strength on the thickness, structure, pore formation, and surface roughness of films formed on aluminum alloys is investigated. In this study, we investigated the effect of silane coupling treatment on the joining strength and sealing performance between aluminum alloy and polymer. After a two-step anodization process with additional treatment by silane, the oxide film with chemically modified nanostructure is strongly bonded to the polymer through physical and chemical reactions. More specifically, after the two-step anodization with silane treatment, the oxide film has a three-dimensional (3D) nanostructure and the silane components are present in combination with hydroxyl groups up to a depth of 150 nm. Accordingly, the joining strength between the polymer and aluminum alloy increases from 29 to 35 MPa, and the helium leak performance increases from 10-2-10-4 to 10-8-10-9 Pa ㎥ s-1.
Keywords
silane coupling agent; porous oxide film; joining strength; helium leak; waterproof;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. C. Liu, J. Liao, Y. Gao and K. Nakata, Sci. Technol. Welding and Joining, 20, 291 (2015).   DOI
2 S. T. Abrahami, T. Hauffman, J. M. M. D. Kok, J. M. C. Mol and H. Terryn, J. Phys. Chem. C, 120, 19670 (2016).   DOI
3 Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz and C. Mai, Compos. Part A: Appl. Sci. Manuf., 41, 806 (2010).   DOI
4 H. Masuda and K. Fukuda, Science, 268, 1466 (1995).   DOI
5 S.-Z. Kure-Chu, K. Osaka, H. Yashiro, H. Segawa, K. Wada and S. Inoue, J. Electrochem. Soc., 162, C24 (2015).   DOI
6 O. Jessensky, F. Muller and U. Gosele, Appl. Phys. Lett., 72, 1173 (1998).   DOI
7 O. Izadi, P. Mosaddegh, M. Silani and M. Dinari, J. Manuf. Process., 30, 217 (2017).   DOI
8 A. B. Abibe, M. Sonego, J. F. D. Santos, L. B. Canto and S. T. Amancio-Filho, Mater. Des., 92, 632 (2016).   DOI
9 S. T. Abrahami, Ph. D. Thesis. Delft University of Technology (2016).
10 B. Arkles, Silane coupling agents: connecting across boundaries, p. 9, Morrisville (2003).
11 S. H. Lee, H. Yashiro and S. Z. Kure-Chu, J. Korean Inst. Surf. Eng., 53, 144 (2020).   DOI
12 S. H. Lee, H. Yashiro and S. Z. Kure-Chu, Korean J. Mater. Res., 29, 288 (2019).   DOI
13 N. Z. Borba, L. Blaga, J. F. dos Santos and S. T. Amancio-Filho, Mater. Lett., 215, 31 (2018).   DOI
14 Y. Kajihara, Y. Tamura, F. Kimura, G. Suzuki, N. Nakura and E. Yamaguchi, CIRP Annals, 67, 591 (2018).   DOI
15 D. Quan, N. Murphy and A. Ivankovic, Int. J. Adhes. Adhes., 77, 138 (2017).   DOI
16 Y. J. Chen, T. M. Yue and Z. N. Guo, J. Mater. Process. Technol., 249, 441 (2017).   DOI
17 E. E. Feistauer, R. P. M. Guimaraes, T. Ebel, J. F. D. Santos and S. T. Amancio-Filhoac, Mater. Lett., 170, 1 (2016).   DOI
18 A. J. Al-Obaidi, Ph. D. Thesis, p.1-246, University of Sheffield (2018).
19 F. Lambiase, A. Paoletti, V. Grossi and S. Genna, J. Mater. Process. Technol., 250, 379 (2017).   DOI
20 F. Lambiase and S. Genna, Int. J. Adhes. Adhes., 84, 265 (2018).   DOI