Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.11.649

Properties of Piezoelectric Generators and K0.5Bi0.5TiO3 Films Prepared by Sol-Gel Method  

Lee, Young-Ho (Dept. of Nano & Materials Science and Engineering, Kyungpook National University)
Park, Sang-Shik (Dept. of Nano & Materials Science and Engineering, Kyungpook National University)
Publication Information
Korean Journal of Materials Research / v.31, no.11, 2021 , pp. 649-656 More about this Journal
Abstract
K0.5Bi0.5TiO3 (KBT) thin films were prepared by sol-gel processing for future use in piezoelectric generators. It is believed that the annealing temperature of films plays an important role in the output performance of piezoelectric generators. KBT films prepared on Ni substrates were annealed at 500 ~ 700 ℃. Tetragonal KBT films were formed after annealing process. As the annealing temperature increased, the grain size of KBT films increased. KBT thin films show piezoelectric constant (d33) from 23 to 41 pC/N. The increase of grain size in KBT films brought about output voltage and current in the KBT generators. Also, the increase in the displacement of specimens during bending test resulted in increases in output voltage and current. Although KBT generators showed lower output power than those of generators prepared using NBT films, as reported previously, the KBT films prepared by sol-gel method show applicability as piezoelectric thin films for lead-free nano-generators, along with NBT films.
Keywords
piezoelectric generator; $K_{0.5}Bi_{0.5}TiO_3$; sol-gel; lead free; output voltage;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 F. R. Fan, W. Tang and Z. L. Wang, Adv. Mater., 28, 4283 (2016).   DOI
2 K. I. Park, J. H. Son, G. T. Hwang, C. K. Jeong, J. Ryu, M. Koo, I. Choi, S. H. Lee, M. Byun, Z. L. Wang and K. J. Lee, Adv. Mater., 26, 2514 (2014).   DOI
3 Z. L. Wang and J. Song, Science, 312, 242 (2006).   DOI
4 S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang and Z. L. Wang, Nat. Nanotechnol., 5, 366 (2010).   DOI
5 K. Momeni, G. M. Odegard and R. S. Yassar, J. Appl. Phys., 108, 114303 (2010).   DOI
6 A. T. Le, M. Ahmadipour and S. Y. Pung, J. Alloys Compd., 844, 156172 (2020).   DOI
7 X. Niu, W. Jia, S. Qian, J. Zhu, J. Zhang, X. Hou, J. Mu, W. Geng, J. Cho, J. He and X. Chou, ACS Sustainable Chem. Eng., 7, 979 (2019).   DOI
8 Y. Huan, X. Wang, J. Fang and L. Li, J. Eur. Ceram. Soc., 34, 1445 (2014).   DOI
9 K. I. Park, S. Xu, Y. Liu, G. T. Hwang, S. J. L. Kang, Z. L. Wang and K. J. Lee, Nano Lett., 10, 4939 (2010).   DOI
10 V. A. Isupov, Ferroelectrics, 315, 123 (2005).   DOI
11 M. H. H. Jumali, S. M. Mohammad, R. Awang, M. Yahaya and M. M. Salleh, Adv. Mater. Res., 364, 412 (2011).   DOI
12 L. Hou, Y. D. Hou, X. M. Song, M. K. Zhu, H. Wang and H. Yan, Mater. Res. Bull., 41, 1330 (2006).   DOI
13 Y. D. Hou, L. Hou, S. Y. Huang, M. K. Zhu, H. Wang and H. Yan, Solid State Commun., 137, 658 (2006).   DOI
14 M. Yaseen, X. Chen, W. Ren, Y. Feng, P. Shi, X. Wu and W. Zhu, Ceram. Int., 39, S471 (2013).   DOI
15 J. P. Mecurio and P. Marchet, Integrated Ferroelectrics Int. J., 61, 163 (2004).   DOI
16 Y. Hou, M. Zhu, L. Hou, J. Liu, J. Tang, H. Wang and H. Yan, J. Cryst. Growth, 273, 500 (2005).   DOI
17 P. V. B. Rao, E. V. Ramana and T. B. Sankaram, J. Alloys Compd., 467, 293 (2009).   DOI
18 J. A. Cho, M. H. Kuk, Y. S. Sung, S. H. Lee, T. K. Song, S. J. Jeong, J. S. Song and M. H. Kim, Korean J. Mater. Res., 15, 639 (2005).   DOI
19 S. Huo, S. Yuan, Z. Tian, C. Wang and Y. Qiu, J. Am. Ceram. Soc., 95, 1383 (2012).   DOI
20 C. R. Bowen, H. A. Kim, P. M. Weaver and S. Dunn, Energy Environ. Sci., 7, 25 (2014).   DOI
21 X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou and X. Wang, J. Am. Chem. Soc., 136, 2905 (2104).   DOI
22 X. Liu, X. J. Zheng, J. Y. Liu and K. S. Zhou, J. Electroceramics, 29, 270 (2012).   DOI
23 Y. S. Sung, J. M. Kim, J. H. Cho, T. K. Song, M. H. Kim, H. H. Chong, T. G. Park, D. Do and S. S. Kim, Integrated Ferroelectrics Int. J., 114, 92 (2010).   DOI
24 S. Huo, S. Yuan, Z. Tian, C. Wang and Y. Qiu, J. Am. Ceram. Soc., 95, 1383 (2012).   DOI
25 S. Park, Y. Kim, H. Jung, J. Y. Park, N. Lee and Y. Seo, Sci. Rep., 7, 17290 (2017).   DOI
26 N. R. Alluri, A. Chandrasekhar, V. Vivekananthan, Y. Purusothaman, S, Selvarajan, J. H. Jeong and S. J. Kim, ACS Sustainable Chem. Eng., 5, 4730 (2017).   DOI
27 J. Wu, D. Xiao and J. Zhu, J. Mater. Sci.: Mater. Electron., 26, 9297 (2015).   DOI
28 D. Zhou, Y. Zhou, Y. Tian, Y. Tu, G. Zheng and H. Gu, J. Mater. Sci. Technol., 31, 1181 (2015).   DOI
29 J. Sengupta, R. K. Sahoo, K. K. Bardhan and C. D. Mukherjee, Mater. Lett., 65, 2572 (2011).   DOI
30 J. Konig and D. Suvorov, J. Eur. Ceram. Soc., 35, 2791 (2015).   DOI