Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.7.327

Fabrication of Micro Conductor Pattern on Polymer Material by Laser Induced Surface Activation Technology  

Lee, Sung-Hyung (Gakko hojin Kitahara gakuen)
Yashiro, Hitoshi (Department of Chemistry and Biological Science, Iwate University)
Kure-Chu, Song-Zhu (Materials Function and Design, Nagoya Institute of Technology)
Publication Information
Korean Journal of Materials Research / v.30, no.7, 2020 , pp. 327-332 More about this Journal
Abstract
Laser induced surface activation (LISA) technology requires refined selection of process variables to fabricate conductive microcircuits on a general polymer material. Among the process variables, laser mode is one of the crucial factors to make a reliable conductor pattern. Here we compare the continuous wave (CW) laser mode with the pulse wave (PW) laser mode through determination of the surface roughness and circuit accuracy. In the CW laser mode, the surface roughness is pronounced during the implementation of the conductive circuit, which results in uneven plating. In the PW laser mode, the surface is relatively smooth and uniform, and the formed conductive circuit layer has few defects with excellent adhesion to the polymer material. As a result of a change of laser mode from CW to PW, the value of Ra of the polymer material decreases from 0.6 ㎛ to 0.2 ㎛; the value of Ra after the plating process decreases from 0.8 ㎛ to 0.4 ㎛, and a tight bonding force between the polymer source material and the conductive copper plating layer is achieved. In conclusion, this study shows that the PW laser process yields an excellent conductive circuit on a polymeric material.
Keywords
conductive microcircuits; laser induced surface activation; pulsed laser; continuous wave laser;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. G. Han, E. A. Kim and K. W. Oh, Synth. Met., 123, 469 (2001).   DOI
2 J. H. Lee and H. K. Shon, J. KSPE, 27, 7 (2010).
3 J. H. Lee, H. K. Shon, J. G. Kim, and D. S. Shin, J. KSPE, 23, 13 (2006).
4 K. K. B. Hon, L. Li and I. M. Hutchings, CIRP Annals - Manuf. Technol., 57, 601 (2008).   DOI
5 Y. Zhang, H. N. Hansen, A. D. Grave, P. T. Tang and J. S. Nielsen, Int. J. Adv. Manuf. Technol., 55, 573 (2011).   DOI
6 Y. Zhang, P. T. Tang, H. N. Hansen and J. S. Nielsen, Plat. Surf. Finsh., 97, 43. (2010).
7 G. Naundorf and H. Wissbrock, Galvanotechnik, 91, 2449 (2000).
8 M. Huske, J. Kickelhain and J. Muller, Proceeding of the 3rd LANE (2001).
9 T. Leneke and S. Hirsch, Circuit World, 35, 23 (2009).   DOI
10 Y. Zhang, G. Kontogeorgis and H. N. Hansen, J. Adhes. Sci. Technol., 25, 16 (2011)
11 A. Islam, Ph.D. Thesis, p. 153, Technical University of Denmark (2008).
12 S. Z. Chu, M. Sakairi and H. Takahashi, J. Electrochem. Soc., 146, 537 (1999).   DOI
13 B. M. Paik, J. H. Lee, D. S. Shin and K.S. Lee, J. KSPE, 29, 41 (2012).   DOI
14 D. W. Ahn, B. G. Bak and D. E. Kim, J. KSPE, 27, 24 (2010).