Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.1.44

Effect of Intercritical Annealing on Microstructure and Mechanical Properties of Fe-9Mn-0.2C-3Al-0.5Si Medium Manganese Steels Containing Cu and Ni  

Lee, Seung-Wan (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Sin, Seung-Hyuk (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.30, no.1, 2020 , pp. 44-49 More about this Journal
Abstract
The effect of intercritical annealing temperature on the microstructure and mechanical properties of Fe-9Mn-0.2C-3Al-0.5Si medium manganese steels containing Cu and Ni is investigated in this study. Six kinds of medium manganese steels are fabricated by varying the chemical composition and intercritical annealing temperature. Hardness and tensile tests are performed to examine the correlation of microstructure and mechanical properties for the intercritical annealed medium manganese steels containing Cu and Ni. The microstructures of all the steels are composed mostly of lath ferrite, reverted austenite and cementite, regardless of annealing temperature. The room-temperature tensile test results show that the yield and tensile strengths decrease with increasing intercritical annealing temperature due to higher volume fraction and larger thickness of reverted austenite. On the other hand, total and uniform elongations, and strain hardening exponent increase due to higher dislocation density because transformation-induced plasticity is promoted with increasing annealing temperature by reduction in reverted austenite stability.
Keywords
medium manganese steel; intercritical annealing; tensile property; reverted austnite; austenite stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Cheng, B. Hu, S. L. Liu, H. Guo, M. Enomoto and C. J. Shang, Mater. Sci. Eng. A, 746, 41 (2019).   DOI
2 M. T. Kim, T. M. Park, K. Baik, W. S. Choi and J. Han, Mater. Sci. Eng. A, 752, 43 (2019).   DOI
3 H. Song, J. Yoo, S. H. Kim, S. S. Sohn, M. Koo, N. J. Kim and S. Lee, Acta Mater., 135, 215 (2017).   DOI
4 H. Song, S. S. Sohn, J. H. Kwak, B. J. Lee and S. Lee, Metall. Mater. Trans. A, 47, 2674 (2016).   DOI
5 Y. K. Lee and J. Han, Mater. Sci. Technol., 31, 843 (2015).   DOI
6 C. Shao, W. Hui, Y. Zhang, X. Zhao and Y. Weng, Mater. Sci. Eng. A, 682, 45 (2017).   DOI
7 S. Yan, T. Liang, J. Chen, T. Li and X. Liu, Mater. Sci. Eng. A, 746, 73 (2019).   DOI
8 J. Li, R. Song, X. Li, N. Zhou and R. Song, Mater. Sci. Eng. A, 745, 212 (2019).   DOI
9 S. Lee, S. H. Kang, J. H. Nam, S. M. Lee, J. B. Seol and Y. K. Lee, Metall. Mater. Trans. A, 50, 2655 (2019).   DOI
10 H. Lee, M. C. Jo, S. S. Sohn, A. Zargaran, J. H. Ryu, N. J. Kim and S. Lee, Acta Mater., 147, 247 (2018).   DOI
11 S. Kang, R.W. Hofer, J. G. Speer, D. Krizan, D. K. Matlock and E. D. Moor, Steel Research, 89, 1 (2018).
12 R. Ding, Z. Dai, M. Huang, Z. Yang, C. Zhang and H. Chen, Acta Mater., 147, 59 (2018).   DOI
13 X. Zhao, Y. Shen, L. Qiu, Y. Liu, X. Sun and L. Zuo, Materials, 7, 7891 (2014).   DOI
14 R. Rana, P. J. Gibbs, E. D. Moor, J. G. Spper and D. K. Matlock, Steel Res. Int., 86, 1139 (2015).   DOI
15 G. E. Dieter, Mechanical Metallurgy, SI Metric edn., p. 145, McGraw-hill, New York (1988).