Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.11.615

The Effect of Microwave Annealing Time on the Electrical Characteristics for InGaZnO Thin-Film Transistors  

Jang, Seong Cheol (Department of Materials Science and Engineering, Chungnam National University)
Park, Ji-Min (Department of Materials Science and Engineering, Chungnam National University)
Kim, Hyoung-Do (Department of Materials Science and Engineering, Chungnam National University)
Lee, Hyun Seok (Department of Physics, Research Institute for Nanoscale Science and Technology, Chungbuk National University)
Kim, Hyun-Suk (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.30, no.11, 2020 , pp. 615-620 More about this Journal
Abstract
Oxide semiconductor, represented by a-IGZO, has been commercialized in the market as active layer of TFTs of display backplanes due to its various advantages over a-Si. a-IGZO can be deposited at room temperature by RF magnetron sputtering process; however, additional thermal annealing above 300℃ is required to obtain good semiconducting properties and stability. These temperature are too high for common flexible substrates like PET, PEN, and PI. In this work, effects of microwave annealing time on IGZO thin film and associated thin-film transistors are demonstrated. As the microwave annealing time increases, the electrical properties of a-IGZO TFT improve to a degree similar to that during thermal annealing. Optimal microwave annealed IGZO TFT exhibits mobility, SS, Vth, and VH of 6.45 ㎠/Vs, 0.17 V/dec, 1.53 V, and 0.47 V, respectively. PBS and NBS stability tests confirm that microwave annealing can effectively improve the interface between the dielectric and the active layer.
Keywords
thin-film transistors; microwave annealing; low temperature; IGZO;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, Nature, 432, 488 (2004).   DOI
2 K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, Jpn. J. Appl. Phys., 45, 4303 (2006).   DOI
3 T. Kamiya, K. Nomura and H. Hosono, Jpn. J. Appl. Phys., 11, 044305 (2010).
4 J. H. Lee, D. H. Kim, D. J. Yang, S. Y. Hong, K. S. Yoon, P. S. Hong, C. O. Jeong, H. S. Park, S. Y. Kim and S. K. Lim, SID 08 Dig., 39, 625 (2008).   DOI
5 T. Arai, J. Soc. Inf. Display, 20, 156 (2012).   DOI
6 J. S. Park, W.-J. Maeng, H.-S. Kim and J.-S. Park, Thin Solid Films, 520, 1679 (2012).   DOI
7 H.-W. Zan, W.-T. Chen, C.-W. Chou, C.-C. Tsai, C.-N. Huang and H.-W. Hsueh, Electrochem. Solid State Lett., 13, H144 (2010).   DOI
8 M. G. Stanford, J. H. Noh, K. Mahady, A. V. Ievlev, P. Maksymovych, O. S. Ovchinnikova and P. D. Rack, ACS Appl. Mater. Interfaces, 9, 35125 (2017).   DOI
9 C. Liu, Y. Sun, H. Qin, Y. Liu, S. Wei and Y. Zhao, IEEE Electron Device Lett., 40, 415 (2019).   DOI
10 J. Sheng, H. J. Lee, S. Oh and J. S. Park, ACS Appl. Mater. Interfaces, 8, 33821 (2016).   DOI
11 J. W. Park, B. H. Kang and H. J. Kim, Adv. Funct. Mater., 30, 1904632 (2020).   DOI
12 J. S. Hur, J. O. Kim, H. A. Kim and J. K. Jeong, ACS Appl. Mater. Interfaces, 11, 21675 (2019).   DOI
13 S. C. Jang, J. Park, H.-D. Kim, H. Hong, K.-B. Chung, Y. J. Kim and H.-S. Kim, AIP Adv., 9, 025204 (2019).   DOI
14 I. K. Lee, K. H. Lee, S. Lee and W. J. Cho, ACS Appl. Mater. Interfaces, 6, 22680 (2014).   DOI
15 A. Saenz-Trevizo, P. Amezaga-Madrid, P. Piza-Ruiz, W. Antunez-Flores and M. Miki-Yoshida, Mater. Res., 19, 33 (2016).   DOI
16 J. Tauc, R. Grigorovici and A. Vancu, Phys. Status Solidi B, 15, 627 (1966)   DOI
17 A. Suresh and J. Muth, Appl. Phys. Lett., 92, 033502 (2008).   DOI
18 J. Su, H. Yang, Y. Ma, R. Li, L. Jia, D. Liu and X. Zhang, Mater. Sci. Semicond. Process, 113, 105040 (2020).   DOI
19 J. K. Jeong, H. Won Yang, J. H. Jeong, Y.-G. Mo and H. D. Kim, Appl. Phys. Lett., 93, 123508 (2008).   DOI
20 H.-C. Cheng and C.-Y. Tsay, J. Alloys Compd., 507, L1 (2010).   DOI