Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.5.304

Graphene Growth with Solid Precursor-Polyethylene  

Ryu, Jongseong (Department of Materials Science and Engineering, Kumoh National Institute of Technology)
An, Sung Jin (Department of Materials Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Korean Journal of Materials Research / v.29, no.5, 2019 , pp. 304-310 More about this Journal
Abstract
Chemical vapor deposition method using $CH_4$ gaseous hydrocarbons is generally used to synthesize large-area graphene. Studies using non-gaseous materials such as ethanol, hexane and camphor have occasionally been conducted. In this study, large-area graphene is synthesized via chemical vapor deposition using polyethylene as a carbon precursor. In particular, we used a poly glove, which is made of low-density polyethylene. The characteristics of the synthesized graphene as functions of the growth time of graphene and the temperature for vaporizing polyethylene are evaluated by optical microscopy and Raman spectroscopy. When the polyethylene vaporizing temperature is over $150^{\circ}C$, large-area graphene with excellent quality is synthesized. Raman spectroscopy shows that the D peak intensity increased and the 2D peak intensity decreased with increasing growth time. The reason for this is that sp3 bonds in the graphene can form when the correct amount of carbon source is supplied. The quality of the graphene synthesized using polyethylene is similar to that of graphene synthesized using methane gas.
Keywords
graphene; polyethylene; chemical vapor deposition; solid precursor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. S. Novoselov, A. K. Geim, S. V. Morzov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004).   DOI
2 Y. Zhang, Y. -W. Tan, H. L. Stormer and P. Kim, Nature, 438, 201 (2005).   DOI
3 C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. Heer, J. Phys. Chem. B, 108, 19912 (2004).   DOI
4 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammers, Y. Jia, Y. Wu, S. T. Nguyen and R. S. Ruoff, Carbon, 45, 1558 (2007).   DOI
5 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. -H. Ahn, P. Kim, J. -Y Choi and B. H. Hong, Nature, 457, 706 (2009).   DOI
6 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Science, 324, 1312 (2009).   DOI
7 S. Bae, H. Kim, Y. Lee, X. Xu, J. -S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. -J. Kim, K. S. Kim, B. Ozyilmaz, J. -H. Ahn, B. H. Hong and S. Iijima, Nat. Nanotechnol., 5, 574 (2010).   DOI
8 I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres and S. smirnov, ACS Nano, 5, 6069 (2011).   DOI
9 A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A. Schaefer and J. Kong, J. Nano Res., 2, 509 (2009).   DOI
10 H. Zhou, W. J. Yu, L. Liu, R. Cheng, Y. Chen, X. Huang, Y. Liu, Y. Wang, Y. Huang and X. Duan, Nat. Commun., 4, 2096 (2013).   DOI
11 K. L. Cashdollar, I. A. Zlochower, G. M. Green, R. A. Thomas and M. Hertzberg, J. Loss Prev. Process Indust., 13, 327 (2000).   DOI
12 M. Kumar and Y. Ando, J. Nanosci. Nanotechnol., 10, 3739 (2010).   DOI
13 M. Ahmed, N. Kishi, R. Sugita, A. Fukaya, I. Khatri, J. Liang, S. M. Mominuzzaman, T. Soga, and T. Jimbo, J. Mater. Sci.: Mater. Electron., 24, 2151 (2013).   DOI
14 Y. Miyata, K. Kamon, K. Ohashi, R. Kitaura, M. Yoshimura and H. Shinohara, Appl. Phys. Lett., 96, 263105 (2010).   DOI
15 A. Srivastava, C. Galande, L. Ci, L. Song, C. Rai, D. Jariwala, K. F. Kelly and P. M. Ajayan, Chem. Mater., 22, 3457 (2010).   DOI
16 G. Kalita, M. Matsushima, H. Uchida, K. Wakita and M. Umeno, J. Mater. Chem., 20, 9713 (2010).   DOI
17 W. Wu, Q. Yu, P. Peng, Z. Liu, J. Bao and S. S. Pei, Nanotechnology, 23, 035603 (2011).   DOI
18 S. Sharma, G. Kalita, R. Hirano, S. M. Shinde, R. Papon, H. Ohtani and M. Tanemura, Carbon, 72, 66 (2014).   DOI
19 G. Ruan, Z. Sun, Z. Peng and J. M. Tour, ACS Nano., 5, 7601-7607 (2011).   DOI
20 P. J. Barham, J. M. Hill, A. Keller and C. D. Rosney, J. Mater. Sci. Lett., 7, 1271 (1988).   DOI
21 L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare and C. N. R. Rao, Adv. Mater., 21, 2726 (2009).
22 W. Choi, M. A. Shehzad, S. Park and Y. Seo, RSC Adv., 7, 6943 (2017).   DOI
23 R. Lv, Q. Li, A. R. Botello-Mendez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. L. Elias, R. Cruz-Silva, H. R. Gutierrez, Y. A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J. -C. Charlier, M. Pan and M. Terrones, Sci. Rep., 2, 1 (2012).
24 C. Wang, Y. Zhou, L. He, T. -W. Ng, G. Gong, Q. -H. Wu, F. Gao, C. -S. Lee and W. Zhang, Nanoscale, 5, 600 (2013).   DOI
25 Eckmann, A. Felten, I. Verzhbitskiy, R. Davey and C. Casiraghi, Phys. Rev. B, 88, 035426 (2013).   DOI
26 T. M. G. Mohiuddin, A Lombardo, R. R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. M. Basko, C. Galiotis, N. Marzari, K. S. Novoselov, A. K. Geim and A. C. Ferrari, Phys. Rev. B, 79, 205433 (2009).   DOI
27 A. C. Ferrari and D. M. Basko, Nat. Nanotechnol., 8, 235 (2013).   DOI
28 Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov and C. Casiraghi, Nano Lett., 12, 3925 (2012).   DOI
29 A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).   DOI
30 A. K. Geim, Science, 324, 1530 (2009).   DOI
31 X. Du, I. Skachko, A. Barker and E. Y. Andrei, Nat. Nanotechnol., 3, 491 (2008).   DOI
32 R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, Science, 320, 1308 (2008).   DOI
33 R. S. Edwards and K. S. Coleman, Nanoscale, 5, 38-51 (2013).   DOI