Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.5.288

Electrolyte Temperature Dependence on the Properties of Plasma Anodized Oxide Films Formed on AZ91D Magnesium Alloy  

Lee, Sung-Hyung (Gakko hojin Kitahara gakuen)
Yashiro, Hitoshi (Department of Chemistry and Biological Science, Iwate University)
Kure-Chu, Song-Zhu (Materials Function and Design, Nagoya Institute of Technology)
Publication Information
Korean Journal of Materials Research / v.29, no.5, 2019 , pp. 288-296 More about this Journal
Abstract
The passivation of AZ91D Mg alloys through plasma anodization depends on several process parameters, such as power mode and electrolyte composition. In this work, we study the dependence of the thickness, composition, pore formation, surface roughness, and corrosion resistance of formed films on the electrolyte temperature at which anodization is performed. The higher the electrolyte temperature, the lower is the surface roughness, the smaller is the oxide thickness, and the better is the corrosion resistance. More specifically, as the electrolyte temperature increases from 10 to $50^{\circ}C$, the surface roughness (Ra) decreases from 0.7 to $0.15{\mu}m$ and the corrosion resistance increases from 3.5 to 9 in terms of rating number in a salt spray test. The temperature increase from 10 to $50^{\circ}C$ also causes an increase in magnesium content in the film from 25 to 63 wt% and a decrease in oxygen from 66 to 21 wt%, indicating dehydration of the film.
Keywords
AZ91D Mg alloy; corrosion; thin films; temperature; pulse mode;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. H. Lee, H. Yashiro and S.-Z. Kure-Chu, J. Korean Inst. Surf. Eng., 50, 432 (2017).   DOI
2 S. H. Lee, H. Yashiro and S.-Z. Kure-Chu, Korean J. Mater. Res., 28, 544 (2018).   DOI
3 B. L. Mordike and T. Ebert, Mater. Sci. Eng., A, 302, 37 (2001).   DOI
4 G. Song, A. Atrens, D. Stjohn, J. Nairn and Y. Li, Corros. Sci., 39, 855 (1997).   DOI
5 Y. Ma, X. Nie, D. O. Northwood and H. Hu, Thin Solid Films, 494, 296 (2006).   DOI
6 J. Gray and B. Luan, J. Alloys Compd., 336, 88 (2002).   DOI
7 P. B. Srinivasan, C. Blawert and W. Dietzel, Mater. Sci. Eng., A, 494, 401 (2008).   DOI
8 Y. Zhang, C. Yan, F. Wang, H. Lou and C. Cao, Surf. Coat. Technol., 161, 36 (2002).   DOI
9 H. Duan, K. Du, C. Yan and F. Wang, Electrochim. Acta, 51, 2898 (2006).   DOI
10 A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. J. Dowey, Surf. Coat. Technol., 122, 73 (1999).   DOI
11 C. B. Wei, X. B. Tian, S. Q. Yang, X. B. Wang, R. K. Y. Fu and P. K. Chu, Surf. Coat. Technol., 201, 5021 (2007).   DOI
12 B.-Y. Kim, D. Lee, Y.-N. Kim, M.-S. Jeon, W.-S. You and K.-Y. Kim, J. Korean Ceram. Soc., 46, 295 (2009).   DOI
13 B. H. Long, H. H. Wu, B. Y. Long, J. B. Wang, N. D. Wang, X. Y. Lu, Z. S. Jin and Y. Z. Bai, J. Phys. D: Appl. Phys., 38, 3491 (2005).   DOI
14 S. Moon and Y. Nam, Corros. Sci., 65, 494 (2012).   DOI
15 E. Atar, C. Sarioglu, U. Demirler, W. Sabri Kayali and H. Cimenoglu, Scr. Mater., 48, 1331 (2003).   DOI
16 T. S. N. S. Narayanan, I. S. Park and M. H. Lee, Prog. Mater. Sci., 60, 1 (2014).   DOI
17 Y. Yan, Y. Han, D. Li, J. Huang and Q. Lian, Appl. Surf. Sci., 256, 6359 (2010).   DOI
18 D. Kwon and S. Moon, J. Korean Inst. Surf. Eng., 49, 46 (2016).   DOI