Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.9.511

Fabrication of Densified W-Ti by Reaction Treatment and Spark Plasma Sintering of WO3-TiH2 Powder Mixtures  

Kang, Hyunji (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Kim, Heun Joo (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Han, Ju-Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Lee, Yunju (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Jeong, Young-Keun (Graduate School of Convergence Science, Pusan National University)
Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.28, no.9, 2018 , pp. 511-515 More about this Journal
Abstract
W-10 wt% Ti alloys that have a homogeneous microstructure are prepared by thermal decomposition of $WO_3-TiH_2$ powder mixtures and spark plasma sintering. The reduction and dehydrogenation behavior of $WO_3$ and $TiH_2$ are analyzed by temperature programmed reduction and a thermogravimetric method, respectively. The X-ray diffraction analysis of the powder mixture, heat-treated in an argon atmosphere, shows W- oxides and $TiO_2$ peaks. Conversely, the powder mixtures heated in a hydrogen atmosphere are composed of W, $WO_2$ and $TiO_2$ phases at $600^{\circ}C$ and W and W-rich ${\beta}$ phases at $800^{\circ}C$. The densified specimen by spark plasma sintering at $1500^{\circ}C$ in a vacuum using hydrogen-reduced $WO_3-TiH_2$ powder mixtures shows a Vickers hardness value of 4.6 GPa and a homogeneous microstructure with pure W, ${\beta}$ and Ti phases. The phase evolution dependent on the atmosphere and temperature is explained by the thermal decomposition and reaction behavior of $WO_3$ and $TiH_2$.
Keywords
W-Ti alloy; heat treatment of $WO_3-TiH_2$ powders; spark plasma sintering; microstructure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. B. Jonsson, C. Hedlund, I. V. Katardjiev and S. Berg, Thin Solid Films, 348, 227 (1999).   DOI
2 W. Qingxiang, L. Shuhua, F. Zhikang and C. Xin, Int. J. Refract. Met. Hard Mater., 28, 576 (2010).   DOI
3 W. D. Klopp, J. Less-Common Met., 42, 261 (1975).   DOI
4 E. Lassner and W. D. Schubert, Tungsten, Kluwer Academic/Plenum Publishers, New York, USA (1999).
5 H. Jahangiri, S. Sonmez and M.L. Ovecoglu, Indian J. Mater. Sci., 2016, 1 (2016).
6 L. J. Kecskes and I. W. Hall, Metall. Mater. Trans. A, 26, 2407 (1995).   DOI
7 Q. X. Wang, X. H. Wang, Y. Yang and Z. K. Fan, Int. J. Refract. Met. Hard Mater., 27, 847 (2009).   DOI
8 N.-Y. Kwon, Y.-K. Jeong and S.-T. Oh, J. Korean Powder Metall. Inst., 24, 384 (2017) (in Korean).   DOI
9 S. D. Robertson, B. D. McNicol, J. H. De Baas, S. C. Kloet and J. W. Jenkins, J. Catal., 37, 424 (1975).   DOI
10 T. R. Wilken, W. R. Morcom, C. A. Wert and J. B. Woodhouse, Metall. Mater. Trans. B, 7, 589 (1976).   DOI
11 V. Bhosle, E. G. Baburaj, M. Miranova and K. Salama, Mater. Sci. Eng., A, 356, 190 (2003).   DOI
12 T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprzak, Binary Alloy Phase Diagrams, 2nd ed., ASM International, Ohio, USA (1990).
13 L. J. Kecskes and I. W. Hall, J. Mater. Process. Technol., 94, 247 (1999).   DOI
14 F. H. Froes, Titanium, p. 116, ASM International, Ohio, USA (2015).