Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.8.440

Leakage Current Reduction of Ni-MILC Poly-Si TFT Using Chemical Cleaning Method  

Lee, Kwang-Jin (Department of Materials Science & Engineering, Hanyang University)
Kim, Doyeon (Department of Energy Engineering, Dankook University)
Choi, Duck-Kyun (Department of Materials Science & Engineering, Hanyang University)
Kim, Woo-Byoung (Department of Energy Engineering, Dankook University)
Publication Information
Korean Journal of Materials Research / v.28, no.8, 2018 , pp. 440-444 More about this Journal
Abstract
An effective cleaning method for Ni removal in Ni-induced lateral crystallization(Ni-MILC) poly-Si TFTs and their electrical properties are investigated. The HCN cleaning method is effective for removal of Ni on the crystallized Si surface, while the nitric acid treatment results decrease by almost two orders of magnitude in the Ni concentration due to effective removal of diffused Ni mainly in the poly-Si grain boundary regions. Using the HCN cleaning method after the nitric acid treatment, re-adsorbed Ni on the Si surfaces is effectively removed by the formation of Ni-cyanide complexions. After the cleaning process, important electrical properties are improved, e.g., the leakage current density from $9.43{\times}10^{-12}$ to $3.43{\times}10^{-12}$ A and the subthreshold swing values from 1.37 to 0.67 mV/dec.
Keywords
nickel removal; poly-Si TFTs; nitric acid treatment; hydrogen cyanide cleaning;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Bonnel, N. Duhamel, L. Haji, B. Loisel and J. Stoemenos, IEEE Electron Device Lett., 14, 551 (1993).   DOI
2 S. Noguchi, S. Kiyama, S. Tsuda and S. Nakano, Jpn. J. Appl. Phys., 32, 6190 (1993).   DOI
3 K. Shimizu, O. Sugiura and M. Matsumura, IEEE Trans. Electron Devices, 40, 112 (1993).   DOI
4 R. Bachrach, K. Winer, J. Boyce, S. Ready, R. Johnson and G. Anderson, J. Electron. Mater., 19, 241 (1990).   DOI
5 G. Giust and T. Sigmon, IEEE Trans. Electron Devices, 45, 925 (1998).   DOI
6 D. Fork, G. Anderson, J. Boyce, R. Johnson and P. Mei, Appl. Phys. Lett., 68, 2138. (1996)   DOI
7 R. Cammarata, C. Thompson, C. Hayzelden and K. Tu, J. Mater. Res., 5, 2133 (1990).   DOI
8 O. Nast and A. J. Hartmann, J. Appl. Phys., 88, 716 (2000).   DOI
9 J. B. Lee, C. J. Lee and D. K. Choi, Jpn. J. Appl. Phys., 40, 6177 (2001).   DOI
10 D. Murley, N. Young, M. Trainor and D. McCulloch, IEEE Trans. Electron Devices, 48, 1145 (2001).   DOI
11 H. Kobayashi, Y. L. Liu, Y. Yamashita, J. Ivan o, S. Imai and M. Takahashi, Sol. Energy, 80, 645 (2006).   DOI
12 N. Fujiwara, Y. L. Liu, M. Takahashi and H. Kobayashi, J. Electrochem. Soc., 153, G394 (2006).   DOI
13 M. Takahashi, Y. L. Liu, N. Fujiwara, H. Iwasa and H. Kobayashi, Solid State Commun., 137, 263 (2006).   DOI
14 M. Madani, Y. L. Liu, M. Takahashi, H. Iwasa and H. Kobayashi, J. Electrochem. Soc., 155, H895 (2008).   DOI
15 O. Maida, A. Asano, M. Takahashi, H. Iwasa and H. Kobayashi, Surf. Sci., 542, 244 (2003).   DOI
16 D. R. Lide, CRC Handbook of Chemistry and Physics, 75th ed., p.951, CRC Press, Inc., Boca Raton, USA (1995).
17 K. Cheng, J. Lee and J.W. Lyding, Appl. Phys. Lett., 77, 3388 (2000).   DOI
18 N. Fujiwara, Y. L. Li, T. Nakamura, O. Maida, M. Takahashi and H. Kobayashi, Appl. Surf. Sci., 235, 372 (2004).   DOI
19 Z. Jin, K. Moulding, H.S. Kwok and M. Wong, IEEE Trans. Electron Devices, 46, 78 (1999).   DOI
20 W. B. Kim, T. Matsumoto and H. Kobayashi, Appl. Phys. Lett., 93, 072101 (2008).   DOI
21 J. Ryuta, T. Yoshimi, H. Kondo, H. Okuda and Y. Shimanuki, Jpn. J. Appl. Phys., 31, 2338 (1992).   DOI
22 F. Edelman, C. Cytermann, R. Brener, M. Eizenberg, Y. L. Khait, R. Weil and W. Beyer, J. Appl. Phys., 75, 7875 (1994).   DOI