Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.1.43

Useful Effects of Fumed Silica Nanoparticles in an Ionic Liquid Electrolyte for High Temperature Supercapacitor  

Kim, Dong Won (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
Jung, Hyunyoung (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.28, no.1, 2018 , pp. 43-49 More about this Journal
Abstract
The demand for energy storage devices capable of operating at high temperatures is increasing. In order to operate at high temperatures, a device must have excellent thermal stability and no risk of explosion. Ionic liquids are electrolytes that satisfy the above conditions, and studies on improving their performance have attracted great interest. Here, we report the results of a study on the fabrication of a supercapacitor that has a composite electrolyte prepared by dispersing fumed silica in an ionic liquid. The fumed silica filler exhibits improved ionic conductivity and lower interfacial resistance. In particular, the silica nanoparticles with diameters of 10 nm exhibit better electrochemical properties than fillers of other diameters and have excellent device performance of 33 times higher than the pristine ionic liquid at high temperatures. This study can be used to improve the electrolytes of electrochemical devices, such as the next generation battery or lithium ion battery.
Keywords
supercapacitor; ionic liquid; fumed silica; nanoparticles; energy storage;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 L. Wei and G. Yushin, Nano Energy, 1, 552 (2012).   DOI
2 R. Vellacheri, A. Al-Haddad, H. Zhao, W. Wang, C. Wang and Y. Lei, Nano Energy, 8, 231 (2014).   DOI
3 I. Yang, G. Lee and J. C. Jung, Korean J. Met. Mater., 26, 696 (2016).   DOI
4 W. Lu, K. Henry, C. Turchi and J. Pellegrino, J. Electrochem. Soc., 155, A361 (2008).   DOI
5 P. Huang, X. Luo, Y. Peng, N. Pu, M. Ger, C. Yang, T. Wu and J. Chang, Electrochim. Acta, 161, 371 (2015).   DOI
6 A. Balducci, U. Bardi, S. Caporali, M. Mastragostino and F. Soavi, Electrochem. Commun., 6, 566 (2004).   DOI
7 L. Negre, B. Daffos, V. Turq, P. L. Taberna and P. Simon, Electrochim. Acta, 206, 490 (2016).   DOI
8 E. Frackowiak, J. Braz. Chem. Soc., 17, 1074 (2006).   DOI
9 X. Liu, Z. Wen, D. Wu, H. Wang, J. Yang and Q. Wang, J. Mater. Chem. A, 2, 11569 (2014).   DOI
10 A. Vioux, L. Viau, S. Volland and J. L. Bideau, C. R. Chim., 13, 242 (2010).   DOI
11 Y. Fu, X. Ma, Q. Yang and X. Zong, Mater. Lett., 57, 1759 (2003).   DOI
12 S. Ramesh and C. Liew, Iran. Polym. J., 21, 273 (2012).   DOI
13 C. Lu, T. Hoang, T. Doan, H. Zhao, R. Pan, L. Yang, W. Guan and P. Chen, Appl. Energy, 170, 58 (2016).   DOI
14 S. Ahmad, M,. Deepa and S. A. Agnihotry, Sol. Energy Mater. Sol. Cells, 92, 184 (2008).   DOI
15 Z. Ueno, A. Inaba, M. Kondoh and M. Watanabe, Langmuir, 24, 5253 (2008).   DOI
16 A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 157, 11 (2006).   DOI
17 Product information from http://www.sigmaaldrich.com and https://www.aerosil.com/www2/uploads/productfinder/AEROSIL-TT-600-EN.pdf
18 H. Y. Jung, M. B. Karimi, M. G. Hahm, P. M. Ajayan and Y. J. Jung, Sci. Rep., 2, 773 (2012).
19 S. M. Jung, D. L. Mafra, C.-T. Lin, H. Y. Jung and J. Kong, Nanoscale, 7, 4386 (2015).   DOI
20 P. L. Taberna, P. Simon and J. F. Fauvarque, J. Electrochem. Soc., 150, A292 (2003).   DOI
21 L. L. Zhang and X. S. Zhao, Chem. Soc. Rev., 38, 2520(2009).   DOI