Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.12.758

Element Analysis related to Mobility and Stability of ZTO Thin Film using the CO2 Gases  

Oh, Teresa (Department of Semiconductor Engineering, Cheongju University)
Publication Information
Korean Journal of Materials Research / v.28, no.12, 2018 , pp. 758-762 More about this Journal
Abstract
The transfer characteristics of zinc tin oxide(ZTO) on silicon dioxide($SiO_2$) thin film transistor generally depend on the electrical properties of gate insulators. $SiO_2$ thin films are prepared with argon gas flow rates of 25 sccm and 30 sccm. The rate of ionization of $SiO_2$(25 sccm) decreases more than that of $SiO_2$(30 sccm), and then the generation of electrons decreases and the conductivity of $SiO_2$(25 sccm) is low. Relatively, the conductivity of $SiO_2$(30 sccm) increases because of the high rate of ionization of argon gases. Therefore, the insulating performance of $SiO_2$(25 sccm) is superior to that of $SiO_2$(30 sccm) because of the high potential barrier of $SiO_2$(25 sccm). The $ZTO/SiO_2$ transistors are prepared to research the $CO_2$ gas sensitivity. The stability of the transistor of $ZTO/SiO_2$(25 sccm) as a high insulator is superior owing to the high potential barrier. It is confirmed that the electrical properties of the insulator in transistor devices is an important factor to detect gases.
Keywords
ZTO; depletion layer; insulator; capacitance; $SiO_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Nomura, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, Appl. Phys. Lett., 93, 192107 (2008).   DOI
2 S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa and M. Kawasaki1, Appl. Phys. Lett., 93, 123309 (2008).   DOI
3 T. Oh and C. H. Kim, J. Nanosci. Nanotechnol., 16, 2096 (2016).   DOI
4 F. Liu, Y. Zhou, Y. Wang, X. Liu, J. Wang and H. Guo, Quantum Mater., 1, 16004 (2016).   DOI
5 S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen and W. C. Wub, Solid-State Electron., 54, 1497 (2010).   DOI
6 S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa and M. Kawasaki1, Appl. Phys. Lett., 93, 123309 (2008).   DOI
7 A. Suresh and J. F. Muth, Appl. Phys. Lett., 92, 033502 (2008).   DOI
8 T. Oh, Electron. Mater. Lett., 11, 853 (2015).   DOI
9 J. Maserjian, J. Vac. Sci. Technol., 11, 996 (1974).   DOI
10 J. Maserjian and N. Zamani, Appl. Phys. Lett., 53, 559 (1982).
11 T. Oh, Korean J. Mater. Res., 25, 1149 (2015).
12 C. S. Han and S. W. Kim, Korean J. Mater. Res., 28, 12 (2018).   DOI
13 T. Oh, Japanese J. Appl. Phys., 45, 264 (2006).   DOI