Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.10.590

Effect of TiO Addition on Morphologies and Luminescence Properties of ZnO Crystals Fabricated by Vapor Transport Method  

Lee, Geun-Hyoung (Electrical & Electronic Materials Engineering Major, Division of Advanced Materials Engineering, Dong-eui University)
Publication Information
Korean Journal of Materials Research / v.28, no.10, 2018 , pp. 590-594 More about this Journal
Abstract
ZnO micro/nanocrystals are formed by a vapor transport method. Mixtures of ZnO and TiO powders are used as the source materials. The TiO powder acts as a reducing agent to reduce the ZnO to Zn and plays an important role in the formation of ZnO micro/nanocrystals. The vapor transport process is carried out in air at atmospheric pressure. When the weight ratios of TiO to ZnO in the source material are lower than 1:2, no ZnO micro/nanocrystals are formed. However, when the ratios of TiO to ZnO in the source material are greater than 1:1, the ZnO crystals with one-dimensional wire morphology are formed. In the room temperature cathodoluminescence spectra of all the products, a strong ultraviolet emission centered at 380 nm is observed. As the ratio of TiO to ZnO in the source material increases from 1:2 to 1:1, the intensity ratio of ultraviolet to visible emission increases, suggesting that the crystallinity of the ZnO crystals is improved. Only the ultraviolet emission is observed for the ZnO crystals prepared using the source material with a TiO/ZnO ratio of 2:1.
Keywords
zinc oxide crystals; ZnO and TiO powder mixture; thermal evaporation; reducing agent;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Zhou, C. Zhan, Y. Wang, Y. Su, Z. Yang and Y. Zhang, Mater. Lett., 65, 832 (2011).   DOI
2 M. Biswas, E. McGlynn and M. O. Henry, Microelectron. J., 40, 259 (2009).   DOI
3 Y. S. Lim, J. W. Park, S. T. Hong and J. Kim, Mater. Sci. Eng., B, 129, 100 (2006).   DOI
4 C. X. Xu, X. W. Sun, Z. L. Dong and M. B. Yu, Appl. Phys. Lett., 85, 3878 (2004).   DOI
5 B. D. Yao, Y. F. Chan and N. Wang, Appl. Phys. Lett., 81, 757 (2002).   DOI
6 H. Lv, D. D. Sang, H. D. Li, X. B. Du, D. M. Li and G. T. Zou, Nanoscale Res. Lett., 5, 620 (2010).   DOI
7 Z. Zhang, S. J. Wang, T. Yu and T. Wu, J. Phys. Chem. C, 111, 17500 (2007).   DOI
8 P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H. J. Choi, Adv. Funct. Mater., 12, 323 (2002).   DOI
9 X. Wang, J. Song and Z. L. Wang, Chem. Phys. Lett., 424, 86 (2006).   DOI
10 S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, H. W. Shim, E. K. Suh and C. J. Lee, Chem. Phys. Lett., 363, 134 (2002).   DOI