Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.5.255

Detection of Oxygen Species Generated from Ag2Se-Graphene Heterojunction Photocatalysts with Excellent Visible Light Driven Photocatalytic Performance  

Meng, Ze-Da (Jiangsu Key Laboratory of Environmental Functional Materials, College of Chemistry and Bioengineering, Suzhou University of Science and Technology)
Oh, Won-Chun (Department of Advanced Materials Science & Engineering, Hanseo University)
Publication Information
Korean Journal of Materials Research / v.27, no.5, 2017 , pp. 255-262 More about this Journal
Abstract
Reactive oxygen species (ROS) can be produced by interactions between sunlight and light-absorbing substances in natural water environments and can completely destroy various organic pollutants in waste water. In this study, we used graphene oxide modified $Ag_2Se$ nanoparticles to enhance photochemically generated oxygen (PGO) species activity. Surface area and pore volumes of the $Ag_2Se-graphene$ ($Ag_2Se-G$) samples showed catastrophic decrease due to deposition of $Ag_2Se$. The generation of reactive oxygen species was detected through the oxidation reaction of DPCI to DPCO. The photocurrent density and the PGO effect increase in the case of the use of modified graphene. The PGO effect of the graphene modified with $Ag_2Se$ composites increased significantly due to a synergetic effect between graphene and the $Ag_2Se$ nanoparticles. The photocatalytic activity of sample was evaluated by measuring the degradation of organic pollutants such as methylene blue (MB) and industrial dyes such as Texbrite BA-L (TBA) under visible light.
Keywords
$Ag_2Se-graphene$; TEM; visible light; FT-IR; industrial dyes; texbrite BA-L;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 O. K. Dalrymple, E. Stefanakos, M. A. Trotz and D. Y. Goswami, Appl. Catal. B: Environ., 98, 27 (2010).   DOI
2 P. Xu, T. Xu, J. Lu, S. M. Gao, N. S. Hosmane, B. B. Huang, Y. Dai, Y. B. Wang, Energy Environ. Sci., 3, 1128 (2010).   DOI
3 S. Bagwasi, B. Z. Tian, J. L. Zhang and M. Nasir, Chem. Eng. J., 217, 108 (2013).   DOI
4 O. K. Dalrymple, E. Stefanakos, M. A. Trotz and D. Y. Goswami, Appl. Catal. B: Environ., 98, 27 (2010).   DOI
5 H. Liu, X. N. Dong, X. C. Wang, C. C. Sun, J. Q. Li and Z. F. Zhu, Chem. Eng. J., 230, 279 (2013).   DOI
6 J. F. W. Mosselmans, R. A. D. Pattrick, G. van der Laan, J. M. Charnock, D. J. Vaughan, C. M. B. Henderson and C. D. Garner, Phys. Chem. Minerals, 22, 311 (1995).   DOI
7 N. Nakashima, T. Ishii, M. Shirakusa, T. Nakanishi, H. Murakami and T. Sagara, Chem. Eur. J, 7, 1766 (2001).   DOI
8 J. J. Zhao, B. T. Jiang, S. Y. Zhang, H. L. Niu, B. K. Jin and Y. P. Tian, Sci. China Ser. B, Chem., 52, 2213 (2009).   DOI
9 H. M. Pathan and C. D. Lokhande, Bull. Mater. Sci., 27, 85 (2004).   DOI
10 V. Buschmann, G. V. Tendeloo, Ph. Monnoyer and J. B. Nagy, Langmuir, 14, 1528 (1998).   DOI
11 J. Wang, Y. W. Guo, B. Liu, X. D. Jin, L. J. Liu, R. Xu, Y. M. Kong and B. X. Wang, Ultrason. Sonochem., 18, 177 (2011).   DOI
12 X. W. Zhang, M. H. Zhou and L. C. Lei, Carbon, 43, 1700 (2005).   DOI
13 A. Tubtimtae, M. W. Lee, G. J. Wang, J. Power Sources, 196, 6603 (2011).   DOI
14 J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang and D. D. Sun, Adv. Funct. Mater., 20, 4175 (2010).   DOI
15 Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater., 22, 3906 (2010).   DOI
16 Z. D. Meng, T. Ghosh, L. Zhu, J. G. Choi, C. Y. Park and W. C. Oh, J Mater. Chem., 22, 16127 (2012).   DOI
17 Z. D. Meng, M. M. Peng, L. Zhu and W. C. Oh, Appl. Catal. B: Environ., 113-114, 141 (2012).   DOI
18 Y. Cui, G. Chen, J. Ren, M. Shao, Y. Xie and Y. Qian, J. Solid State Chem., 172, 17 (2003).   DOI
19 K. Nagasuna, T. Akita, M. Fujishima and H. Tada, Langmuir, 27, 7294 (2011).   DOI
20 H. I. Kim, G. H. Moon, D. M. Satoca, Y. Park and W. Y. Choi, J. Phys. Chem. C, 116, 1535 (2012).   DOI
21 Z. D. Meng, K. Zhang and W. C. Oh, Korean J. Mater. Res., 20, 228 (2010).   DOI
22 R. Azumi, K. Kakiuchi and M. Matsumoto, Bull. Chem. Soc. Japan, 76, 1561 (2003).   DOI
23 H. Gommans, B. Verreet, B. P. Rand, R. Muller, J. Poortmans, P. Heremans and J. Genoe, Adv. Funct. Mater., 18, 3686 (2008).   DOI
24 D. Ma, M. Zhang, G. Xi, J. Zhang and Y. Qian, Inorg. Chem., 45, 4845 (2006).   DOI
25 H. Q. Cao, Y. J. Xiao, Y. X. Lu, J. F. Yin, B. J. Li, S. S. Wu and X. M. Wu, Nano. Res., 12, 863 (2010).
26 M. D. Donohue and G. L. Aranovich, Fluid Phase Equilib., 158-160, 557 (1999).   DOI