Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.2.113

Structural and Thermal Characteristics of Graphites Treated in Acidic Solutions  

Song, Seung Won (Department of Advanced Materials Engineering, Dong-Eui University)
Min, Eui Hong (Solueta, Ltd., Research Center)
Lee, Dong Won (Solueta, Ltd., Research Center)
Kim, Jungsoo (Biomedical R&D Center, Pusan National University Hospital)
Oh, Weontae (Department of Advanced Materials Engineering, Dong-Eui University)
Publication Information
Korean Journal of Materials Research / v.27, no.2, 2017 , pp. 113-118 More about this Journal
Abstract
Natural and expandable graphites were chemically treated in acidic aqueous solutions such as acetic acid or mixtures of acetic acid and nitric acid. Structures and thermal conductivities of the as-treated graphites were characterized in detail. Both graphites were significantly oxidized in the mixed acidic solution of $H_2SO_4$ and $HNO_3$, which condition was generally used for the oxidation of carbon nanotubes. This considerable oxidation of graphites caused a depression of their thermal conductivity. The structural characteristics, obtained by XRD and XPS, show that the graphites treated in the relatively weak acidic conditions (acetic acid or mixture of acetic acid and nitric acid) were quite similar to the untreated graphites. However, the thermal conductivities of both acidic-treated graphites were remarkably increased.
Keywords
thermal conductivity; graphite sheet; acidic aqueous solution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Zhou, D. Yu, C. Min, Y. Fu and X. Guo, J. Appl. Polym. Sci., 112, 1695(2009).   DOI
2 G. W. Lee, J. Kim, J. Yoon, J. S. Bae, B. C. Shin, I. S. Kim, W. Oh and M. Ree, Thin Solid Films, 516, 5781 (2008).   DOI
3 J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. Rodriguez-Macias, Y.-S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley, Science, 280, 1253 (1998).   DOI
4 J. Liu, A.G. Rinzler and H. J. Dai, Science, 280, 1253 (1998).   DOI
5 W. Hummers and R. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).   DOI
6 G. W. LeeandS. Kumar, J. Phys. Chem. B., 109, 17128 (2005).   DOI
7 G.-W. Lee, J. Kim, J. Yoon, J.-S. Bae, B. C. Shin, I. S. Kim, W. Oh and M. Ree, Thin Solid Films, 516, 5781 (2008).   DOI
8 Y. K. Chen, M. L. H. Green, J. L. Griffin, J. Hammer, R. M. Lago and S. K. Tsang, Adv. Mater., 8, 1012 (1996).   DOI
9 M. Koo, J.-S. Bae, S. E. Shim, D. Kim, D.-G. Nam, J.- W. Lee, G.-W. Lee, J. H. Yeum and W. Oh, Colloid Polymer Sci., 289, 1503 (2011).   DOI
10 D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010).   DOI
11 A. C. Ferrari, Solid State Comm., 143, 47 (2007).   DOI
12 Y. K. Chen, M. L. H. Green, J. L. Griffin, J. Hammer, R. M. Lago and S. C. T sang, Adv. Mater., 8, 1012 (1996).   DOI
13 F. Tuinstra and J. L. Koenig. J. Chem. Phys., 53, 1126 (1970).   DOI
14 A. Lerf, H. He, M. Forster and J. Klinowski, J. Phys. Chem. B., 102, 4477 (1998).   DOI
15 L T. Szabo and O. Berkesi, Carbon, 43, 3186 (2005).   DOI
16 N. I. Kovtyukhova, Y. Wang, A. Berkdemir, R. Cruz-Silva, M. Terrones, V. H. Crespi and T. E. Mallouk, Nat. Chem., 6, 957 (2014).   DOI