Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.12.679

Strain Gradient Crystal Plasticity Finite Element Modeling for the Compression Behaviors of Single Crystals  

Jung, Jae-Ho (HYUNJIN Materials Co.)
Cho, Kyung-Mox (School of Materials Science and Engineering, Pusan National University)
Choi, Yoon Suk (School of Materials Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.27, no.12, 2017 , pp. 679-687 More about this Journal
Abstract
A strain-gradient crystal plasticity finite element method(SGCP-FEM) was utilized to simulate the compressive deformation behaviors of single-slip, (111)[$10{\bar{1}}$], oriented FCC single-crystal micro-pillars with two different slip-plane inclination angles, $36.3^{\circ}$ and $48.7^{\circ}$, and the simulation results were compared with those from conventional crystal plasticity finite element method(CP-FEM) simulations. For the low slip-plane inclination angle, a macroscopic diagonal shear band formed along the primary slip direction in both the CP- and SGCP-FEM simulations. However, this shear deformation was limited in the SGCP-FEM, mainly due to the increased slip resistance caused by local strain gradients, which also resulted in strain hardening in the simulated flow curves. The development of a secondly active slip system was altered in the SGCP-FEM, compared to the CP-FEM, for the low slip-plane inclination angle. The shear deformation controlled by the SGCP-FEM reduced the overall crystal rotation of the micro-pillar and limited the evolution of the primary slip system, even at 10 % compression.
Keywords
strain gradient; crystal plasticity; slip; single crystal; finite element method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Acharya and J. L. Bassani, J. Mech. Phys. Solids, 48, 1565 (2000).   DOI
2 A. Acharya and A. J. Beaudoin, J. Mech. Phys. Solids, 48, 2213 (2000).   DOI
3 A. J. Beaudoin, A. Acharya, S. R. Chen, D. A. Korzekwa and M. G. Stout, Acta Mater., 48, 3409 (2000).   DOI
4 A. J. Beaudoin and A. Acharya, Mat. Sci. Eng. A, 309- 310, 411 (2001).
5 Y. Wang, J. W. Kysar, S. Vukelic and Y. L. Yao, J. Manuf. Sci. & Eng., 131, 041014-1 (2009).   DOI
6 C. J. Bayley, W. A. Brekelmans and M. G. D. Geers, Phil. Mag., 87, 1361 (2007).   DOI
7 A. G. Evans and J. W. Hutchinson, Acta Mater., 57, 1675 (2007).
8 H. Wang, K. C. Hwang, Y. Huang, P. D. Wu, B. Liu, G. Ravichandran, C.-S. Han, H. Gao, Int. J. Plasticity, 23, 1540 (2007).   DOI
9 J. M. Gerken and P. R. Dawson, J. Mech. Phys. Solids, 56, 1651 (2008).   DOI
10 A. Ma, F. Roters and D. Raabe, Acta Mater., 54, 2169 (2006).   DOI
11 U. Borg, Euro. J. Mech. A/Sol., 26, 313 (2006).
12 M. Kuroda and V. Tvergaard, J. Mech. Phys. Solids, 54, 1789 (2006).   DOI
13 A. Arsenlis, D. M. Parks, R. Becker and V. V. Bulatov, J. Mech. Phys. Solids, 52, 1213 (2004).   DOI
14 F. T. Meissonnier, E. P. Busso and N. P. O'Dowd, Int. J. Plasticity, 17, 601 (2001).   DOI
15 Y. Aoyagi and K. Shizawa, Int. J. Plasticity, 23, 1022 (2007).   DOI
16 Y. S. Choi, K.-M. Cho, D.-G. Nam and I.-D. Choi, Korean J. Mater. Res., 25, 81 (2015).   DOI
17 J.-H. Jung, Y.-S. Na, K.-M. Cho, D. M. Dimiduk and Y. S. Choi, Metall. Mater. Trans. A, 46, 4834 (2015).   DOI
18 Y. Zhou, K. W. Neale and L. S. Toth, Int. J. Plasticity, 9, 961 (1993).   DOI
19 P. Franciosi and A. Zaoui, Acta Metall., 30, 1627 (1982).   DOI
20 P. Franciosi and A. Zaoui, Acta Metall., 30, 2141 (1982).   DOI
21 P. Franciosi, M. Berveiller and A. Zaoui, Acta Metall., 28, 273 (1980).   DOI
22 H. Mecking and U. F. Kocks, Acta Mater., 29, 173 (1981).
23 P. Shanthraj, M. A. Zikry, Acta Mater., 59, 7695 (2011).   DOI
24 P. M. Anderson and J. R. Rice, Acta Metall., 33, 409 (1985).   DOI
25 D. Peirce, C. F. Shih and A. Needleman, Computers & Structures, 18, 875 (1984).   DOI
26 D. Peirce, R. J. Asaro and A. Needleman, Acta Metall., 31, 1951 (1983).   DOI
27 K. S. Cheong, E. P. Busso and A. Arsenlis, Int. J. Plasticity, 21, 1797 (2005).   DOI
28 Y. S. Choi, T. A. Parthasarathy, D. M. Dimiduk and M. D. Uchic, Mater. Sci. Eng. A, 397, 69 (2005).   DOI
29 H. Zhang, B. E. Schuster, Q. Wei and K. T. Ramesh, Scripta Mater., 54, 181 (2006).   DOI
30 Z. Zhao, M. Ramesh, D. Raabe, A. M. Cuitino and R. Radovitzky, Int. J. Plasticity, 24, 2278 (2008).   DOI
31 Y. S. Choi, M. D. Uchic, T. A. Parthasarathy and D. M. Dimiduk, Scripta Mater., 57, 849 (2007).   DOI
32 R. Maass, S. Van Petegem, D. Ma, J. Zimmermann, D. Grolimund, F. Roters, H. Van Swygenhoven and D. Raabe, Acta Mater., 57, 5996 (2009).   DOI
33 D. Raabe, D. Ma and F. Roters, Acta Mater., 55, 4567 (2007)   DOI
34 A. Musienko, A. Tatschl, K. Schmidegg, O. Kolednik, R. Pippan and G. Cailetaud, Acta Mater., 55, 4121 (2007).   DOI
35 C. Rehrl, B. Volker, S. Kleber, T. Antretter and R. Pippan, Acta Mater., 60, 2379 (2012).   DOI
36 E. Heripre, M. Dexet, J. Crepin, L. Gelebart, A. Roos, M. Bornert and D. Caldemaison, Int. J. Plasticity, 23, 1512 (2007).   DOI
37 S. R. Kalidindi, A. Bhattacharyya and R. D. Doherty, Proc. R. Soc. Lond. A, 460, 1935 (2004).   DOI
38 Y. Yang, L. Wang, T. R. Bieler, P. Eisenlohr and M. A. Crimp, Metall. Mater. Trans. A, 42, 636 (2011).   DOI
39 A. C. Lewis, M. A. Siddiq Qidwai and A. B. Geltmacher, Metall. Mater. Trans. A, 41, 2522 (2010).   DOI
40 D. Raabe, M. Sachtleber, Z. Zhao, F. Roters and S. Zaefferer, Acta Mater., 49, 3433 (2001).   DOI
41 D. Pyle, J. Lu, D. Littlewood and A. Maniatty, Comp. Mechanics, 52, 135 (2012).
42 A. Zeghadi, S. Forest, A.-F. Gourgues and O. Bouaziz, Phil. Mag., 87, 1425 (2007).   DOI
43 H. Lim, M. G. Lee, J. K. Kim, B. L. Adams and R. H. Wagoner, Int. J. Plasticity, 27, 1328 (2011).   DOI
44 O. Diard, S. Leclercq, G. Rousselier and G. Cailletaud, Int. J. Plasticity, 21, 691 (2005).   DOI
45 F. Roters, P. Eisenlohr, L. Hantcherli, D. D. Tjahjanto, T. R. Bieler and D. Raabe, Acta Mater., 58, 1152 (2011).
46 W. Ludwig, A. King, P. Reischig, M. Herbiga, E. M. Lauridsend, S. Schmidt, H. Proudhon, S. Forest, P. Cloetens, S. Rolland du Roscoat, J. Y. Buffiere, T. J. Marrow and H. F. Poulsen, Mat. Sci. Eng A, 524, 69 (2009).   DOI
47 M. A. Siddiq Qidwai, A. C. Lewis and A. B. Geltmacher, Acta Mater., 57, 4233 (2009).   DOI
48 D. Chandrasekaran and M. Nygards, Mat. Sci. Eng. A, 365, 191 (2004).   DOI
49 T. R. Bieler, P. Eisenlohr, F. Roters, D. Kumar, D. E. Mason, M. A. Crimp and D. Raabe, Int. J. Plasticity, 25, 1655 (2009).   DOI
50 O. Diard, S. Leclercq, G. Rousselier and G. Cailletaud, Comp. Mat. Sci., 25, 73 (2002).   DOI
51 F. Barbe, L. Decker, D. Jeulin and G. Cailletaud, Int. J. Plasticity, 17, 513 (2001).   DOI
52 E. Marin and P. R. Dawson, Appl. Mech. and Eng., 165, 1 (1998).   DOI
53 J. Harder: Int. J. Plasticity, 15, 605 (1999).   DOI
54 R. Becker and O. Richmond, Modelling Simul. Mat. Sci. Eng., 2, 439 (1994).   DOI
55 J. F. Nye, Acta Metall., 1, 153 (1953).   DOI