Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.11.609

Growth Mechanism Evolution of ZnO Nanostructures by Leidenfrost Effect in Ultrasonic Spray Pyrolysis Deposition  

Han, In Sub (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Park, Il-Kyu (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.27, no.11, 2017 , pp. 609-616 More about this Journal
Abstract
We investigated a Leidenfrost effect in the growth of ZnO nanostructures on silicon substrates by ultrasonic-assisted spray pyrolysis deposition(SPD). Structural and optical properties of the ZnO nanostructures grown by varying the growth parameters, such as substrate temperature, source concentration, and suction rate of the mist in the chambers, were investigated using field-emission scanning electron microscopy, X-ray diffraction, and photoluminescence spectrum analysis. Structural investigations of the ZnO nanostructures showed abnormal evolution of the morphologies with variation of the substrate temperatures. The shape of the ZnO nanostructures transformed from nanoplate, nanorod, nanopencil, and nanoprism shapes with increasing of the substrate temperature from 250 to $450^{\circ}C$; these shapes were significantly different from those seen for the conventional growth mechanisms in SPD. The observed growth behavior showed that a Leidenfrost effect dominantly affected the growth mechanism of the ZnO nanostructures.
Keywords
ZnO nanostructures; spray pyrolysis deposition; Leidenfrost effect; growth mechanism;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta and H. K. Cho, J. Appl. Phys., 105, 013502 (2012).
2 M. Ardyanian and N. Sedigh, Bull. Mater. Sci., 37, 1309 (2014).   DOI
3 M. B. Rahman, S. H. Keshmirl, Sens. Lett., 7, 1 (2009).   DOI
4 S. Yun, J. Lee, J. Yang and S. Lim., Physica B, 405, 413 (2010).   DOI
5 R. Jaramillo and S. Ramanathan, Sol. Energy Mater. Sol. Cells, 95, 602 (2011).   DOI
6 X. Cai, B. Han, S. Deng, Y. Wang, C. Dong, Y. Wang and I. Djerdj, Cryst. Eng. Comm., 16, 7761 (2014).   DOI
7 D. J. E. Harvie and D. F. Fletcher, Int. J. Heat Mass Transfer, 44, 2643 (2001).   DOI
8 J. C. Vioguie and J. Spitz, J. Electrochem. Soc., 122, 585 (1975).   DOI
9 D. Polsongkram, P. Chamninok, S. Pukird , L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, Physica B, 403, 3713 (2008).   DOI
10 M. Ortel, V. Wagner, J. Cryst. Growth, 363, 185. (2013).   DOI
11 U. P. Muecke, G. L. Messing, L. J. Gauckler, Thin Solid Films, 517, 1515 (2009).   DOI
12 S. Kumar Shah, S. Kumar Chatterjee and A. Bhattarai, J. Chem., 2016, 2176769 (2016).
13 X. Zhu, T. Kawaharamura, A. Z. Stieg, C. Biswas, L. Li, Z. Ma, M. A. Zurbuchen, Q. Pei, and K. L. Wang, Nano Lett., 15, 4948 (2015).   DOI
14 Y. M. Qiao, S. Chandra, Int. J. Heat Mass Transfer, 39, 1379 (1996).   DOI
15 M. Shirota, M. A. J. Van Limbeek, C. Sun, A. Prosperetti and D. Lohse, Phys. Rev. Lett., 116, 064501 (2016).   DOI
16 W. J. Li, E. W. Sji, W. Z. Zhong and Z. W. Yin, J. Cryst. Growth, 203, 186 (1999).   DOI
17 H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu and D. Que, J. Phys. Chem. B, 10, 3955 (2004).
18 H. Agura, A. Suzuki, T. Matsushita, T. Aoki and M. Okuda, Thin Solid Films, 445, 263 (2003).   DOI
19 S. Y. Kuo, W. C. Chen, F. I. Lai, C. P. Cheng, H. C. Kuo, S. C. Wang and W. F. Hsieh, J. Cryst. Growth, 287, 78 (2006).   DOI
20 D. Y. Lee, J. W. Lee, G. H. An, D. H. Riu and H. J. Ahn, Korean J. Mater. Res., 26, 258 (2016).   DOI
21 D. Y. Shin, J. W. Beav, B. R. Koo and H. J. Ahn, Korean J. Mater. Res., 27, 390 (2017).   DOI
22 I. S. Han and I. K. Park, Korean J. Mater. Res., 27, 403 (2017).   DOI
23 I. Isakov, H. Faber, M. Grell, G. W. Moon, N. Pliatsikas, T. Kehagias, G. P. Dimitrakopulos, P. P. Patsalas, R. Li, and T. D. Anthopoulos, Adv. Funct. Mater., 1606407 (2017).
24 M. Ortel and V. Wagner, J. Cryst. Growth, 363, 185 (2013).   DOI
25 Q. Ahsanulhaq, A. Umar and Y. B. Hahn, Nanotechnology, 18, 115603 (2007).   DOI
26 C. X. Xu and X. W. Sun, Jpn.J. Appl. Phys., 42, 4949 (2003).   DOI
27 S. Chen, R. M. Wilson and R. Binions, J. Mater. Chem. A, 3, 5794 (2015).   DOI
28 N. Qin, Q. Xiang, H. B. Zhao, J. C. Zhang and J. Q. Xu, Cryst. Eng. Comm., 16, 7062 (2014).   DOI
29 X. L. Chen, X. H. Geng, J. M. Xue, D. K. Zhang, G. F. Hou and Y. Zhao, J. Cryst. Growth, 296, 43 (2006).   DOI
30 T. Dedova, O. Volobujeva and J. Klauson, Nanoscale. Res. Lett., 2, 391 (2007).   DOI
31 T. Terasako, S. Shirakata and T. Kariya, Thin Solid Films, 420, 13 (2002).
32 R. A. Laudise and A. A. Ballman, J. Phys. Chem., 64, 688 (1960).   DOI