Browse > Article
http://dx.doi.org/10.3740/MRSK.2016.26.1.42

High Performance Thin-Film Transistors Based on Zinc Oxynitride Semiconductors: Experimental and First-Principles Studies  

Kim, Yang-Soo (Department of Materials Science and Engineering, Chungnam National University)
Kim, Jong Heon (Department of Materials Science and Engineering, Chungnam National University)
Kim, Hyun-Suk (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.26, no.1, 2016 , pp. 42-46 More about this Journal
Abstract
The properties of zinc oxynitride semiconductors and their associated thin film transistors are studied. Reactively sputtered zinc oxynitride films exhibit n-type conduction, and nitrogen-rich compositions result in relatively high electron mobility. Nitrogen vacancies are anticipated to act as shallow electron donors, as their calculated formation energy is lowest among the possible types of point defects. The carrier density can be reduced by substituting zinc with metals such as gallium or aluminum, which form stronger bonds with nitrogen than zinc does. The electrical properties of gallium-doped zinc oxynitride thin films and their respective devices demonstrate the carrier suppression effect accordingly.
Keywords
zinc oxynitride; thin-film transistor; field-effect mobility; flat panel displays; first-principles calculation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Hosono, J. Non-Cryst. Solids, 352, 851 (2006).   DOI
2 T. Kamiya, K. Nomura and H. Hosono, Sci. Technol. Adv. Mater., 11, 044305 (2010).   DOI
3 J. S. Park, W.-J. Maeng, H.-S. Kim and J.-S. Park, Thin Solid Films, 520, 1679 (2012).   DOI
4 Y. Ye, R. Lim and J. M. White, J. Appl. Phys., 106, 074512 (2009).   DOI
5 H.-S. Kim, S. H. Jeon, J. S. Park, T. S. Kim, K. S. Son, J.-B. Seon, S.-J. Seo, S.-J. Kim, E. Lee, J. G. Chung, H. Lee, S. Han, M. Ryu, S. Y. Lee and K. Kim, Sci. Rep., 3, 1459 (2013).   DOI
6 K.-C. Ok, H.-J. Jeong, H.-S. Kim and J.-S. Park, IEEE Electron Device Lett., 36, 38 (2015).   DOI
7 K.-C. Ok, H.-J. Jeong, H.-M. Lee, J. Park and J.-S. Park, Ceram. Int., 41, 13281 (2015).   DOI
8 J. T. Jang, J. Park, B. D. Ahn, D. M. Kim, S.-J. Choi, H.-S. Kim and D. H. Kim, ACS Appl. Mater. Interfaces, 7, 15570 (2015)   DOI
9 S. Lee, A. Nathan, Y. Ye, Y. Guo and J. Robertson, Sci. Rep., 5, 13467 (2015).   DOI
10 G. Kresse and J. Furthmuller, Matter Mater. Phys., 54, 11169 (1996).   DOI
11 G. Kresse and J. Joubert, Matter Mater. Phys., 59, 1758 (1999).   DOI
12 P. E. Blochl, Matter Mater. Phys., 50, 17953 (1994).   DOI
13 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996).   DOI
14 Y. Kang, S. H. Jeon, Y.-W. Son, Y.-S. Lee, M. Ryu, S. Lee and S. Han, Phys. Rev. Lett., 108, 196404 (2012).   DOI
15 T. L. Tansley and R. J. Egan, Matter Mater. Phys., 45, 10942 (1992).   DOI
16 M. G. Ganchenkova and R. M. Nieminen, Phys. Rev. Lett., 96, 196402 (2008).
17 R. Long, Y. Dai, L. Yu, B. Huang and S. Han, Thin Solid Films, 516, 1297 (2008).   DOI
18 J. H. Jeong, H. W. Yang, J.-S. Park, J. K. Jeong, Y.-G. Mo, H. D. Kim, J. Song and C. S. Hwang, Electrochem. Solid-State Lett., 11, H157 (2008).   DOI
19 J. S. Park, T. S. Kim, K. S. Son, W.-J. Maeng, H.-S. Kim, M. Ryu and S. Y. Lee, Appl. Phys. Lett., 98, 012107 (2011).   DOI