Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.5.247

Effect of Precursor Concentration on the Structural, Morphological, and Optical Properties of TiO2 Nano-Flowers  

Anwar, M.S. (School of Materials Science and Engineering, Changwon National University)
Danish, Rehan (School of Materials Science and Engineering, Changwon National University)
Park, Keun Young (School of Materials Science and Engineering, Changwon National University)
Koo, Bon Heun (School of Materials Science and Engineering, Changwon National University)
Publication Information
Korean Journal of Materials Research / v.25, no.5, 2015 , pp. 247-252 More about this Journal
Abstract
The effect of precursor concentration on the structural, morphological, and optical properties of $TiO_2$nano-flowers was investigated in this study. An increase in crystallite size was observed with an increase in the concentration of the precursor (titanium butoxide). The FE-SEM micrographs of the as-prepared samples show a three-dimensional flower-like morphology. The flowers consist of several nanorods coming out of a single core and have very sharp edges. Also, the variation in the aspect ratio of the nanostructure was observed with the concentration of the precursor. The photocatalytic properties of the samples show that the sample that has a high aspect ratio (AR~9) has a much better photocatalytic activity compared to the nano-crystal with a low aspect ratio (AR~6.1). It is believed that the excellent photocatalytic performance and short time synthesis of $TiO_2$nano-flowers using the microwave hydrothermal method can have potential applications in the field of photocatalysis.
Keywords
titania; hydrothermal; photo-catalysis; XRD; FE-SEM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Y. Liang, C. Cui, H. H. Hu, Y. P. Wang, S. Xu, B. Ying, P. G. Li, B. Q. Lu, H. L. Shen, J. Alloys Compd., 582, 236 (2014).   DOI   ScienceOn
2 Y. Li, Q. Ma, J. Han, L. Ji, J. Wang, J. Chen, Y. Wang, Appl. Surf. Sci., 297, 103 (2014).   DOI   ScienceOn
3 Q. Gao, X. M. Wu, Y. M. Fan, X. Y. Zhou, J. Alloys Compd., 579, 322 (2013).   DOI   ScienceOn
4 P. Soundarrajan, K. Sankarasubramanian, T. Logu, K. Sethuraman, K. Ramamurthi, Mater. Lett., 116, 191 (2014).   DOI   ScienceOn
5 A. M. Selman, Z. Hassan, Optical Mater., 44, 37 (2015).   DOI   ScienceOn
6 T. Tachikawa, Y. Takai, S. Tojo, M. Fujitsuka, H. Irie, K. Hashimoto, T. Majima, J. Phys. Chem. B, 110(26), 13158 (2006).   DOI   ScienceOn
7 C. Kormann, D. Bahnemann, M. Hoffmann, J. Phys. Chem., 92(18), 5196 (1988).   DOI   ScienceOn
8 E. Piera, M. I. Tejedor, M. Zorn, M. Anderson, Appl. Catalysis B: Environmental., 46, 671 (2003).   DOI
9 M. Anpo, Stud. Surf. Sci. Catal., 130, 157 (2000).   DOI
10 D. N. Liu, G. H. He, L. Zhu, W. Y. Zhou, Y. H. Xu, Appl. Surf. Sci., 258, 8055 (2012).   DOI   ScienceOn
11 H. J. Song, T. Chen, Y. L. Sun, X. Q. Zhang, X. H. Jia, Ceram. Int., 40, 11015 (2014).   DOI   ScienceOn
12 H. P. Xua, J. H. Liao, S. Yuan, Y. Zhao, M. H. Zhang, Z. Y. Wang, L. Y. Shi, Mater. Res. Bull., 51, 326 (2014).   DOI   ScienceOn
13 D. Aphairaj, T. Wirunmongkol, S. Niyomwas, S. Pavasupree, P. Limsuwan, Ceram. Int., 40, 9241 (2014).   DOI   ScienceOn
14 J. Y. Chen, H. M. Zhang, P. Liu, Y. Wang, X. L. Liu, G. Y. Li, T. C. An, H. J. Zhao, J. Colloid Int. Sci., 429, 53 (2014).   DOI   ScienceOn
15 Y. Jing, L. S. Li, Q. Y. Zhang, P. Lu, P. H. Liu, X. H. Lu, J. Hazard. Mater., 189, 40 (2011).   DOI   ScienceOn
16 W. L. Guo, X. L. Liu, P. W. Huo, X. Gao, D. Wu, Z. Y. Lu, Y. S. Yan, Appl. Surf. Sci., 258, 6891 (2012).   DOI   ScienceOn
17 M. Colombo, S. Carregal-Romero, M. F. Casula, L. Gutieiyrrez, M. P. Morales, I. B. Bohm, J. T. Heverhagen, D. Prosperi, W. J. Parak, Chem. Soc. Rev., 41, 4306 (2012).   DOI   ScienceOn
18 S. F. Ou, H. H. Chou, C. S. Lin, C. J. Shih, K. K. Wang, Y. N. Pan, Appl. Surf. Sci., 258, 6190 (2012).   DOI   ScienceOn
19 I. S. Grover, S. Singh, B. Pal, Appl. Surf. Sci., 280, 366 (2013).   DOI   ScienceOn
20 Y. W. Jun, M. F. Casula, J. H. Sim, S. Y. Kim, J. Cheon, A. P. Alivisatos, J. Am. Chem. Soc., 125, 15981 (2003).   DOI   ScienceOn
21 T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater., 11, 1307 (1999).   DOI
22 Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, H. Xu, J. Am. Chem. Soc., 125, 12384 (2003).   DOI   ScienceOn
23 R. Beranek, H. Tsuchiya, T. Sugishima, J. M. Macak, L. Taveira, S. Fujimoto, H. Kisch, P. Schmuki, Appl. Phys. Lett., 87, 243114 (2005).   DOI   ScienceOn
24 Z. Zhang, C. C. Wang, R. Zakaria, J. Y. Ying, J. Phys. Chem. B, 102, 10871 (1998).   DOI   ScienceOn
25 J. H. Park, S. Kim, A. J. Bard, Nano. Lett., 6, 24 (2006).   DOI   ScienceOn
26 G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, Nano Lett., 6(2), 215 (2006).   DOI   ScienceOn
27 B. Sun, G. Zhou, Y. Zhang, R. Liu, T. Li, Chem. Eng. J., 264, 125 (2015).   DOI   ScienceOn
28 Y. Gua, M. Xinga, J. Zhang, Appl. Surf. Sci., 319, 8 (2014)   DOI   ScienceOn
29 B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang, N. Wang, Appl. Phys. Lett., 82, 281 (2003).   DOI   ScienceOn
30 J. M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem., Int. Ed., 44, 2100 (2005).   DOI   ScienceOn