Browse > Article
http://dx.doi.org/10.3740/MRSK.2015.25.11.598

Synthesis and Characterization of ZnAl2O4 Nanopowders by a Reverse Micelle Processing  

Hoon, Son-Jung (Department of Advanced Materials Science and Engineering, Changwon National University)
Sohn, Jeongho (School of Port and Logistics, Kaya University)
Shin, Hyung-Sup (Department of Optometry, Kaya University)
Bae, Dong-Sik (Department of Advanced Materials Science and Engineering, Changwon National University)
Publication Information
Korean Journal of Materials Research / v.25, no.11, 2015 , pp. 598-601 More about this Journal
Abstract
Using reverse micelle processing, $ZnAl_2O_4$ nanopowders were synthesized from a mixed precursor(consisting of $Zn(NO_3)_2$ and $Al(NO_3)_3$). The $ZnAl_2O_4$ was prepared by mixing the aqueous solution at a molar ratio of Zn : Al = 1 : 2. The average size and distribution of the synthesized powders with heat treatment at $600^{\circ}C$ for 2 h were in the range of 10-20 nm and narrow, respectively. The average size of the synthesized powders increased with increasing water to surfactant molar ratio. The XRD diffraction patterns show that the phase of $ZnAl_2O_4$ was spinel(JCPDS No. 05-0669). The synthesized and calcined powders were characterized using a thermogravimetric - differential scanning calorimeter(TG-DSC), X-ray diffraction analysis (XRD), and high resolution transmission electron microscopy(HRTEM). The effects of the synthesis parameter, such as the molar ratio of water to surfactant, are discussed.
Keywords
$ZnAl_2O_4$; nanopowders; reverse micelle processing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Bid and S. K. Pradan, Mater. Chem. Phys., 82, 27 (2003).   DOI
2 R. E. Ayala and D. W. Marsh, Ind. Chem. Res., 30, 55 (1991).   DOI
3 R. Roesky, J. Weiguny, H. Bestgen and U. Dingerdissen, Appl. Catal. A: General, 176, 213 (1999).   DOI
4 S. K. Sampath and J. F. Cordaro, J. Am. Ceram. Soc., 81, 649 (1998).
5 W. S. Tzing and W. H. Tuan, J. Mater. Sci. Lett., 15, 1395 (1996).   DOI
6 A. R. Phani, M. Passacantando and S. Santucci, Mater. Chem. Phys., 68, 66 (2001).   DOI
7 M. Zawadzki, J. Wrzyszcz, W. Strek and D. Hreniak, J. Alloy. Compd., 323-324, 279 (2001).   DOI
8 T. K. Shioyama, U.S. Patent 4, 260, 845, 1981.
9 G. Aquilar-Rios, M. Valenzuela, P. Salas, H. Armendariz, P. Bosch, G. Del Toro, R. Sila, V. Bertin, S. Castillo and A. I. Schifter, Appl. Catal. A: General, 127, 65 (1995).   DOI
10 T. El-Nabarany, A. A. Attia and M. N. Alayn, Mater. Lett., 24, 319 (1995).   DOI
11 H. Grabowska, W. Mi ta, J. Trawczy ski, J. Wrzyszcz and M. Zawadzki, Appl. Catal. A: General, 220, 207 (2001).   DOI
12 K. Sampath and F. Cordano, J. Am. Ceram. Soc., 81, 649 (1998).
13 G. F. Hetting, H. Worl, H. H. Weiter, Z. Anorg. Allg. Chem., 283, 207 (1956).   DOI
14 C.O. Arean, B. S. Sintes, G. T. Palomino, C. M. Carbonell, E. E. Platero and J. B. P. Soto, Microporous Mater., 8, 187 (1997).   DOI
15 M. A. Valenzuela, P. Bosh, G. Aguilar-Rios, A. Montoya and I. Schifter, J. Sol-Gel Sci. Technol., 8, 107 (1997).
16 M. Zawadzki and J. Wrzyszcz, Mater. Res. Bull., 35, 109 (2000).   DOI
17 Z. Chen, E. Shi, Y. Zheng, W. Li, N.Wu and W. Zhong, Mater. Lett., 56, 601 (2002).   DOI
18 D. S. Bae, S. W. Park, K. S. Han and J. H. Adair, Met. Mater., Int., 7, 399 (2001).   DOI
19 Pileni, M. P., Structure and Reactivity in Reverse Micelles, Elsevier, Amsterdam 1989.
20 B. K. Paul and S. P. Moulik, J. Dispersion Sci. Technol., 18, 301 (1997).   DOI
21 Ossed-Asare, K., and Arriagada, F. J., Ceram. Trans., 12, 3 (1990).
22 Pillai, V., Kumar, P., Hou, M. J., Ayyub, P. and Shah, D. D., Adv. Colloid Interface Sci., 55, 241 (1995).   DOI
23 Ph. Monnoyer, A. Fonseca and J. B. Nagy, Colloid Surf. A: Physicochem. Eng. Aspects., 100, 233 (1995).   DOI
24 Y. Yafet and C. Kittel, Phys. Rev., 87, 290 (1952).   DOI
25 C. Petit, P. Lixon and M. P. Pileni, J. Phys. Chem., 97, 12974 (1993).   DOI