Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.3.140

Graphene Doping Effect of Thin Film and Contact Mechanisms  

Oh, Teressa (Department of Semiconductor Engineering, Cheongju University)
Publication Information
Korean Journal of Materials Research / v.24, no.3, 2014 , pp. 140-144 More about this Journal
Abstract
The contact mechanism of devices is usually researched at electrode contacts. However, the contact between a dielectric and channel at the MOS structure is more important. The graphene was used as a channel material, and the thin film transistor with MOS structure was prepared to observe the contact mechanism. The graphene was obtained on Cu foil by the thermal decomposition method with $H_2$ and $CH_4$ mixed gases at an ambient annealing temperature of $1000^{\circ}C$ during the deposition for 30 min, and was then transferred onto a $SiO_2/Si$ substrate. The graphene was doped in a nitrogen acidic solution. The chemical properties of graphene were investigated to research the effect of nitric atoms doping. The sheet resistance of graphene decreased after nitrogen acidic doping, and the sheet resistance decreased with an increase in the doping times because of the increment of negative charge carriers. The nitric-atom-doped graphene showed the Ohmic contact at the curve of the drain current and drain voltage, in spite of the Schottky contact of grapnene without doping.
Keywords
graphene; contact; Cu; nitric atom doping;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S. S. Pei, Appl. Phys. Lett., 93(11), 113103 (2008).   DOI   ScienceOn
2 A. Ismach, C. Druzgalski, S. Penwell, A. Schwartzberg, M. Zheng, A. Javey, J. Bokor and Y. Zhang, Nano Lett., 10, 1542 (2010).   DOI   ScienceOn
3 F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, Nat. Mater., 6(9), 652 (2007).   DOI   ScienceOn
4 Byung-Jae Kim, Chongmin Lee, Younghun Jung, Kwang Hyeon Baik, Michael A. Mastro, Jennifer K. Hite, Charles R. Eddy, Jr., and Jihyun Kim, Appl. Phys. Lett., 99, 143101 (2011)   DOI
5 T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science, 313(5789), 951 (2006).   DOI   ScienceOn
6 A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett., 9, 30 (2009).   DOI   ScienceOn
7 Y. Zhang, J. P. Small, W. V. Pontius and P. Kim, Appl. Phys. Lett., 86(7), 073104 (2005).   DOI   ScienceOn
8 L. Adamska, R. Addou, M. Batzill, and I. I. Oleynik, Appl. Phys. Lett., 101, 051602 (2012)   DOI
9 S. H. Song, O. S. Kwon, H. K. Jeong and Y. G. Kang, Kor. J. Mater. Res., 20(2), 104 (2010).   DOI   ScienceOn
10 A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).   DOI   ScienceOn
11 T. Oh and C. H. Kim, IEEE Trans. Plasma. Sci., 38, 1598 (2010).   DOI   ScienceOn
12 Gunasekaran Venugopal and S.-J. Kim, Curr. Appl. Phys. 11, S381 (2011).   DOI
13 C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, Science, 312 (5777), 1191 (2006).   DOI   ScienceOn
14 J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, Nat. Mater., 7(2), 151 (2008).   DOI   ScienceOn