Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.12.658

Synthesis and Luminescent Characterization of Eu2+/Dy3+-Doped Sr2MgSi2O7 Powders  

Park, Jaehan (Department of Materials Science and Engineering, Kyonggi University)
Kim, Young Jin (Department of Materials Science and Engineering, Kyonggi University)
Publication Information
Korean Journal of Materials Research / v.24, no.12, 2014 , pp. 658-662 More about this Journal
Abstract
$Eu^{2+}/Dy^{3+}$-doped $Sr_2MgSi_2O_7$ powders were synthesized using a solid-state reaction method with flux ($NH_4Cl$). The broad photoluminescence (PL) excitation spectra of $Sr_2MgSi_2O_7:Eu^{2+}$ were assigned to the $4f^7-4f^65d$ transition of the $Eu^{2+}$ ions, showing strong intensities in the range of 375 to 425 nm. A single emission band was observed at 470 nm, which was the result of two overlapping subbands at 468 and 507 nm owing to Eu(I) and Eu(II) sites. The strongest emission intensity of $Sr_2MgSi_2O_7:Eu^{2+}$ was obtained at the Eu concentration of 3 mol%. This concentration quenching mechanism was attributable to dipole-dipole interaction. The $Ba^{2+}$ substitution for $Sr^{2+}$ caused a blue-shift of the emission band; this behavior was discussed by considering the differences in ionic size and covalence between $Ba^{2+}$ and $Sr^{2+}$. The effects of the Eu/Dy ratios on the phosphorescence of $Sr_2MgSi_2O_7:Eu^{2+}/Dy^{3+}$ were investigated by measuring the decay time; the longest afterglow was obtained for $0.01Eu^{2+}/0.03Dy^{3+}$.
Keywords
$Sr_2MgSi_2O_7$; luminescence; phosphor; phosphorescence;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. E. Hannah, A. P. Piquette, M. Anc, J. McKittrick, J. Talbot, J. Han and K. C. Mishra, ECS Trans., 41(37), 19 (2012).
2 Y. J. Park, S. H. Lee, W. K. Jang, C. B. Yoon and C. S. Yoon, J. Kor. Ceram. Soc., 47(6), 503 (2010).   DOI   ScienceOn
3 E. Y. Lee, M. Nazarov and Y. J. Kim, J. Electrochem. Soc., 157(3), J102 (2010).   DOI   ScienceOn
4 J. Park and Y. J. Kim, J. Kor. Ceram. Soc., 51(1), 37 (2014).   DOI   ScienceOn
5 Y. Yonesaki, T. Takei, N. Kumada and N. Kinomura, J. Solid State Chem., 182, 547 (2009).   DOI   ScienceOn
6 J. Park and Y. J. Kim, J. Ceram. Process. Res., 15(3), 189 (2014).
7 X. Zhang, X. Tang, J. Zhang, H. Wang, J. Shi and M. Gong, Powder Technol., 204, 263 (2010).   DOI   ScienceOn
8 Y. Lin, Z. Tang, Z. Zhang, X. Wang and J. Zhang, J. Mater. Sci., 20, 1505 (2001).
9 W. Pan, G. Ning, X. Zhang, J. Wang, Y. Lin and J. Ye, J. Lumin., 128, 1975 (2008).   DOI   ScienceOn
10 K. H. Kwon, W. B. Im and D. Y. Jeon, J. Nanosci. Nanotechnol., 13(6), 4079 (2013).   DOI
11 B. Liu, C. Shi, M. Yin, L. Dong and Z. Xiao, J. Alloy. Compd., 387, 65 (2005).   DOI   ScienceOn
12 T. Kim, Y. Kim and S. Kang, Appl. Phys. B-Lasers Opt., 106, 1009 (2012).   DOI
13 M. Kimata, Z. Kristall., 163, 295 (1983).   DOI
14 G. Blasse, J. Solid State Chem., 207, 62 (1986).
15 D. L. Dexter, J. Chem. Phys. 21, 836 (1953).   DOI
16 J. Park, S. J. Lee and Y. J. Kim, Cryst. Growth Des., 13, 5204 (2013).   DOI   ScienceOn
17 S. Perkowitz, Optical characterization of semiconductors: infrared, raman, and photoluminescence spectroscopy, Academic Press, San Diego (1993).
18 Y. Lin, Ce-W. Nan, X. Zhou, J. Wu, H. Wang, D. Chen and S. Xu, Mater. Chem. Phys., 82, 860 (2003).   DOI   ScienceOn
19 C. C. Lin and R. -S. Liu, J. Phys. Chem. Lett., 2, 1268 (2011).   DOI   ScienceOn
20 J. McKittrick, M. E. Hannah, A. Piquette, J. K. Han, J. I. Choi, M. Anc, M. Galvez, H. Lugauer, J. B. Talbot and K. C. Mishra, ECS J. Solid State Sci. Technol., 2(2), R3119 (2013).
21 G. Blasse, W. L. Wanmaker, J. W. ter Vrugt and A. Bril, Philips Res. Rep., 23, 189 (1968).
22 J. K. Park, K. J. Choi, C. H. Kim, H. D. Park and H. K. Kim, Electrochem. Solid State Lett., 7(10), H42 (2004).   DOI   ScienceOn