Browse > Article
http://dx.doi.org/10.3740/MRSK.2012.22.12.706

Barium Nitrate Single Crystals Growth by Aqueous Solution Method  

Joo, Gi-Tae (Dept. of Materials Science & Engineering, Seoul National University of Science & Technology)
Kang, Bonghoon (Department of Visual Optics, Far East University)
Publication Information
Korean Journal of Materials Research / v.22, no.12, 2012 , pp. 706-710 More about this Journal
Abstract
The growing conditions of barium nitrate $Ba(NO_3)_2$ single crystals using the aqueous solution method have been studied. Supersaturation can be calculated by measuring the temperature of the solution and its equilibrium temperature. Supersaturation of $Ba(NO_3)_2$ was 0.7% at $32.0^{\circ}C$ and about 3% at $34.0^{\circ}C$. The obtained single crystals have three kind of morphology: tetrahedral, cubic, and, rarely, dodecahedral. The normal growth rate is proportional to the supersaturation; it is necessary to make the solution below 5% supersaturation in order to obtain transparent $Ba(NO_3)_2$ single crystals. The normal growth rate for {1$\bar{1}$1} faces was $2.51{\times}10^{-6}$ mm/s for the 0.7% supersaturation condition ($32.0^{\circ}C$), $6.43{\times}10^{-6}$ mm/s for the the condition of 3.0% supersaturation, and $7.01{\times}10^{-6}$ mm/s for the condition of 5.0% supersaturation. The quality of the grown crystals depends on the nature of the seed, the cooling rate employed, and the agitation of the solution. The faces of the obtained crystals have been identified uising an X-ray diffractometer. The surface diffusion is responsible for the low growth rates of the {1$\bar{1}$1} faces.
Keywords
Barium nitrate $Ba(NO_3)_2$ single crystals; supersaturastion; aqueous solution method; growth rate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. N. Karpukhin, Proc. SPIE, 4350, 39 (2001). doi: 10.1117/12.420972.   DOI
2 V. G. Bespalov and N. S. Makarov, Opt. Commun., 203, 413 (2002).   DOI   ScienceOn
3 A. V. Konyashchenko, L. L. Losev and S. Y. Tenyakov, Quantum Electron., 40, 700 (2010).   DOI   ScienceOn
4 P. G. Zverev, T. T. Basiev, V. V. Osiko, A. M. Kulkov, V. N. Voitsekhovskii and V. E. Yakobson, Opt. Mater., 11, 315 (1999).   DOI   ScienceOn
5 P. G. Zverev, J. T. Murray, R. C. Powell, R. J. Reeves and T. T. Basiev, Opt. Commun., 97, 59 (1993).   DOI   ScienceOn
6 P. R. Mildren, H. Ogilvy, M. H. Pask and A. J. Piper, EP1810380A1(patent) 2007.
7 K. Tsukamoto, H. Ohba and I. Sunagawa, J. Cryst. Growth, 63, 18 (1983).   DOI   ScienceOn
8 B. Y. Shekunov, L. N. Rashkovich and I. L. Smol'kii, J. Cryst. Growth, 116, 340 (1992).   DOI   ScienceOn
9 P. Bennema and H. B. K. Haneveld, J. Cryst. Growth, 1, 225 (1967).   DOI   ScienceOn
10 M. Wang, R. W. Peng, P. Bennema and N. B. Ming, Philos. Mag., A71, 409 (1995).
11 A. V. Shubnikov and N. N. Sheftal', Growth of Crystals, Vol. I, 2nd ed., p. 134, Consultants Bureau Inc., NY, USA (1959).
12 K. Maiwa, K. Tsukamoto and I. Sunagawa, J. Cryst. Growth, 82, 611 (1987).   DOI   ScienceOn
13 C. Z. Ge, Z. H. Wu, H. W. Wang, M. Qi and N. B. Ming, J. Appl. Phys., 78, 111 (1995).   DOI   ScienceOn
14 K. Maiwa, K. Tsukamoto and I. Sunagawa, J. Cryst. Growth, 102, 43 (1990).   DOI   ScienceOn
15 K. Onuma, T. Kameyama and K. Tsukamoto, J. Cryst. Growth, 137, 610 (1996).
16 K. Onuma, T. Nakamura and S. Kuwashima, J. Cryst. Growth, 167, 387 (1996).   DOI   ScienceOn
17 B. R. Pamplin, Crystal Growth, 2nd ed., p. 78, Pergamon Press Ltd., Oxford, UK (1980).
18 P. Bennema, in Proceedings of the International Conference on Crystal Growth (Boston, USA, June 1966) D13, p.413.
19 W. K. Burton, N. Cabrera and F. C. Frank, Phil. Trans. R. Soc. Lon. A, 243, 299 (1951). doi:10.1098/rsta.1951.0006.   DOI