Browse > Article
http://dx.doi.org/10.3740/MRSK.2011.21.8.415

Synthesis and Characterization of SnO2 Nanoparticles by Hydrothermal Processing  

Kim, Ho-Jung (School of Nano & Advanced Material Engineering, College of Engineering, Changwon National University)
Son, Jeong-Hun (School of Nano & Advanced Material Engineering, College of Engineering, Changwon National University)
Bae, Dong-Sik (School of Nano & Advanced Material Engineering, College of Engineering, Changwon National University)
Publication Information
Korean Journal of Materials Research / v.21, no.8, 2011 , pp. 415-418 More about this Journal
Abstract
Tin (IV) dioxide ($SnO_2$) has attracted much attention due to its potential scientific significance and technological applications. $SnO_2$ nanoparticles were prepared under low temperature and pressure conditions via precipitation from a 0.1 M $SnCl_4{\cdot}5H_2O$ solution by slowly adding $NH_4OH$ while rapidly stirring the solution. $SnO_2$ nanoparticles were obtained from the reaction in the temperature range from 130 to $250^{\circ}C$ during 6 h. The microstructure and phase of the synthesized tin oxide particles were studied using XRD and TEM analyses. The average crystalline sizes of the synthesized $SnO_2$ particles were from 5 to 20 nm and they had a narrow distribution. The average crystalline size of the synthesized particles increased as the reaction temperature increased. The crystalline size of the synthesized tin oxide particles decreased with increases in the pH value. The X-ray analysis showed that the synthesized particles were crystalline, and the SAED patterns also indicate that the synthesized $SnO_2$ nanoparticles were crystalline. Furthermore, the morphology of the synthesized $SnO_2$ nanoparticles was as a function of the reaction temperature. The effects of the synthesis parameters, such as the pH condition and reaction temperature, are also discussed.
Keywords
Hydrothermal; Nanoparticles; $SnO_2$;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Y. S. He, J. C. Campbell, R. C. Murphy, M. F. Arendt and J. S. Swinnea, J. Mater. Res., 8, 3131 (1993).   DOI
2 X. Duan, Y. Huang, R. Agarwal and C. M. Lieber, Nature, 421, 241 (2003).   DOI   ScienceOn
3 L. Vayssieres and M. Graetzel, Angew. Chem. Int. Ed., 43, 3666 (2004).   DOI   ScienceOn
4 Y. Fukai, Y. Kondo, S. Mori and E. Suzuki, Electrochem. Comm., 9, 1439 (2007).   DOI   ScienceOn
5 G. R. R. A. Kumara, K. Tennakone, I. R. M. Kottegoda, P. K. M. Bandaranayake, A. Konno, M. Okuya, S. Kaneko and K. Murakami, Semicond. Sci. Tech., 18, 312 (2003).   DOI   ScienceOn
6 S. Hirano, Am. Ceram. Soc. Bull., 66, 1342 (1987).
7 W. J. Dawson, Am. Ceram. Soc. Bull., 67, 1673 (1989).
8 S. B. Cho, S. Venigalla and J. H. Adair, Science, Technology, and Applications of Colloidal Suspensions Ceramic Transactions, p.139, ed. J. H. Adair, J. A. Casey, C. A. Randall and S. Venigalla, American Ceramic Society, Indiana, USA (1997).
9 K. Haberko and W. Pyda, Advances in Ceramics, Science and Technology of Zirconia II, p.774, ed. M. Ruhle, N. Claussen and A. H. Heuer, Americal Ceramic Society, USA (1983).
10 R. Pool, Science, 248, 1186 (1990).   DOI   ScienceOn
11 Y. Wang and N. Herron, J. Phys. Chem., 95, 525 (1991).   DOI
12 B. Falabrettia and J. Robertson, J. Appl. Phys. 102, 123703/1 (2007).
13 P. G. Harrison and M. J. Willett, Nature, 332, 337 (1988).   DOI   ScienceOn
14 W. Gopel, Sensors: A Comprehensive Survey -Vol. 9, p. 8, ed. W. Gopel, J. Hesse and J. N. Zemel, VCH: Weinheim, Germany (1995).
15 H. Wang, J. Liang, H. Fan, B. Xi, M. Zhang, S. Xiong, Y. Zhu and Y. Qian, J. Solid State Chem., 181, 122 (2008).   DOI   ScienceOn
16 M. Law, H. Kind, B. Messer, F. Kim and P. Yang, Angew. Chem. Int. Ed., 41, 2405 (2002).
17 B. Wang, L. F. Zhu, Y. H. Yang, N. S. Xu and G. W. Yang, J. Phys. Chem. C, 112, 6643 (2008).   DOI   ScienceOn
18 G. X. Wang, J. S. Park, M. S. Park and X. L. Gou, Sensor. Actuator. B Chem., 131, 313 (2008).   DOI   ScienceOn
19 R. E. Aitchison, Aust. J. Appl. Sci., 5, 10 (1954).