Browse > Article
http://dx.doi.org/10.3740/MRSK.2010.20.2.90

Electrodeposition of GMR Ni/Cu Multilayers in a Recirculating Electrochemical Flow Reactor  

Rheem, Young-Woo (Department of Chemical and Environmental Engineering, University of California-Riverside)
Publication Information
Korean Journal of Materials Research / v.20, no.2, 2010 , pp. 90-96 More about this Journal
Abstract
The recirculating electrochemical flow reactor developed at UCLA has been employed to fabricate nanostructured GMR multilayers. For comparison, Ni/Cu multilayers have been electrodeposited from a single bath, from dual baths and from the recirculating electrochemical flow reactor. For a magnetic field of 1.5 kOe, higher GMR (Max. -5%) Ni/Cu multilayers with low electrical resistivity (< $10\;{\mu}{\Omega}{\cdot}cm$) were achieved by the electrochemical flow reactor system than by the dual bath (Max. GMR = -4.2% and < $20\;{\mu}{\Omega}{\cdot}cm$) or the single bath (Max. GMR = -2.1% and < $90\;{\mu}{\Omega}{\cdot}cm$) techniques. Higher GMR effects have been obtained by producing smoother, contiguous layers at lower current densities and by the elimination of oxide film formation by conducting deposition under an inert gas environment. Our preliminary GMR measurements of Ni/Cu multilayers from the electrochemical flow reactor obtained at low magnetic field of 0.15 T, which may approach or exceed the highest reported results (-7% GMR) at magnetic fields > 5 kOe.
Keywords
GMR; Ni/Cu multilayer; recirculating electrochemical flow reactor; electrodeposition;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 J. Toth, L. F. Kiss, E. Toth-Kadar, A. Dinia, V. Pierron-Bohness, I. Bakonyi, J. Magn. Magn. Mater., 199, 243(1999).   DOI   ScienceOn
2 R. M. Bozorth, 'Ferromagntism', IEEE press, p. 309 (1993).
3 I. Bakonyi, E. Toth-Kadar, T. Becsei, J. Toth, T. Tarnoczi, A. Cziraki, I. Gerocs, G. Nabiyouni, W. Schwarzacher, J. Magn. Magn. Mater., 156, 347 (1996).   DOI   ScienceOn
4 A. Blondel, B. Doudin, J.-Ph. Ansermet, J. Magn. Magn.Mater., 165, 34 (1997).   DOI
5 P. M. Levy, Science, 256, 972 (1992).   DOI
6 S. Menezes and D. P. Anderson, J. Electrochem. Soc., 137, 440 (1990).   DOI
7 H. M Ahmad and D. Greig, J. Phys., 35, C4-223 (1974).
8 J. Toth, L. F. Kiss, E. Toth-Kadar, A. Dinia, V. Pierron-Bohnes, I. Bakonyi, J. Magn. Magn. Mater., 199, 243 (1999).   DOI   ScienceOn
9 K. D. Bird and M. Schlesinger, J. Electrochem. Soc., 142,L65-66 (1995).   DOI
10 H. Kubota, S. Ishio and T. Miyazaki, J. Magn. Magn. Mater.,126, 462 (1993).
11 J. Yahalom and O. Zadok, U. S. Patent. 4652348 (1987).
12 T. L. Hylton, K. R. Coffey, M. A. Parker and I. L.Howard, Science, 261, 1021 (1993).   DOI   ScienceOn
13 J. W. Dini, Plat. & Surf. Fin., 80(1), 26 (1993).
14 W. Schindler, Th. Koop, D. Hofmann and J. Kirscher, IEEE Trans. Magn., 34, 963 (1998).   DOI   ScienceOn
15 C. A. Ross, Annu. Rev. Mater. Sci., 24, 159 (1994) and references cited therein.   DOI
16 N. Myung, Kevin H. Ryu, M. Schwartz and K. Nobe, in Fifth International Symposium on Magnetic Materials, Processes and Devices/ 1998, L. Romankiw, S. Krongelb and C.H Ahn, Editor, PV98-20 p. 194, The Electrochemical Society Proceedings Series, Pennington, NJ,(1998).
17 N. V. Myung, K. H. Ryu, J. H. Kim, M. Schwartz and K. Nobe, Mater. Res. Soc. Symp. Proc. 562, (1998).
18 D. S. Lashmore and M. P. Dariel, J. Electrochem. Soc., 135 1218 (1988).   DOI
19 T. Szczurek, T. Rausch, M. Schlesinger, D. D. Snyder and C. H. Olk, J. Electrochem. Soc., 145(5) 1777 (1999).
20 D. S. Lashmore, Y. Zhang, S. Hua, M. P. Dariel, L. Swartzenruber, and L. Salamanca-Riba, in Magnetic Materials, Processes, and Devices/1994, L. T. Romankiw and D. A. Herman, Editors, PV 94-6, p.205, The ElectrochemicalSociety Proceeding Series, Pennington, NJ (1994).