Browse > Article
http://dx.doi.org/10.3740/MRSK.2009.19.4.186

Electrical Transport Properties of LaNi1-xTixO3(x∼0.5) Ceramics  

Jung, Woo-Hwan (Department of Electronics, Howon University)
Publication Information
Korean Journal of Materials Research / v.19, no.4, 2009 , pp. 186-191 More about this Journal
Abstract
Thermoelectric power and resistivity are measured for the perovskite $LaNi_{1-x}Ti_xO_3$ ($x{\leq}0.5$) in the temperature range 77 K - 300 K. The measured thermoelectric power of $LaNi_{1-x}Ti_xO_3$ ($x{\leq}0.5$) increases linearly with temperature and is represented by A + BT. The x = 0.1 sample showed metallic behavior, the x = 0.3 showed metal and insulating transition around 150 K, and x = 0.5 showed insulating behavior the over the whole temperature range. The electrical resistivity of x = 0.1 shows linear temperature dependence over the whole temperature range and $T^2$ dependence. On the other hand, the electrical resistivity of x = 0.3 shows a linear relation between $ln{\rho}$ and $T^{-1/4}$ (variable range hopping mechanism) in the range of 77 K to 150 K. For x = 0.5, the temperature dependence of resistivity is characteristic of insulating materials; the resistivity data was fitted to an exponential law, such as ln(${\rho}/T$) and $T^{-1}$, which is usually attributed to a small polaron hopping mechanism. These experimental results are interpreted in terms of the spin polaron (x = 0.1) and variable range hopping (x = 0.3) or small polaron hopping (x = 0.5) of an almost localized $Ni^{3+}$ 3d polaron.
Keywords
metallic conductivity; metal-insulator transition; polaron; variable range hopping; thermoelectric power;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 K. P. Rajeev, G. V. Shivashankar and A. K. Raychaudhur, Solid. State Comm., 79, 1112 (1991)   DOI   ScienceOn
2 P. C. Canfield, J. D. Thompson, S. W. Cheong and L. W. Rupp, Phys. Rev. B., 47, 12357 (1993)   DOI   ScienceOn
3 V. Kulkarrni, K. R. Priolkar, P. R. Sarode, R, Rawat, A. Banerjee and S. Emura, J. Phys.: Condens. Matter., 20, 75203 (2008)   DOI   ScienceOn
4 V. H. Crespi, L. Lu,. Y. X. Jia, K. Khazeni, A. Zettle and M. L. Cohen, Phys. Rev. B., 53, 14303 (1996)   DOI   ScienceOn
5 G. H. Zheng, Y. Q ma, X. B. Zhu and Y. P. Sun, Solid State Comm., 142, 217 (2007)   DOI   ScienceOn
6 J. G. Park, M. S. Kim, H. C. Ri, K. H. Kim, T. W. Noh, and S. W. Cheong, Phys. Rev. B., 60, 14804 (1999)   DOI   ScienceOn
7 S. Wang, K. Li, Z. Chen and Y. Zhang, Phys. Rev. B., 61, 575 (2000)   DOI   ScienceOn
8 W. J. Weber, C. W. Griffin and J. L. Bates, J. Am. Ceram. Soc., 70, 265 (1987)   DOI   ScienceOn
9 Y. D. Li, J. H. Zhang, C. S. Xiong and H. W. Liao, J. Am. Ceram. Soc., 83, 980 (2000)   DOI   ScienceOn
10 J. W. Park, M. S. Kim, J. G. Park, I. P. Swainson, H. C. Ri, H. J. Lee, K. H. Kim, T. W. Noh, S. W. Cheong and C. H. Lee, J. Kor. Phys. Soc,, 36, 412 (2000)
11 W. H. Jung, H. Nakatsugawa and R. Iguchi, J. Solid State. Chem., 166, 466 (1997)   DOI   ScienceOn
12 E. Iguch and W. H. Jung, J. Phys. Soc. Jap., 63, 3078 (1994)   DOI   ScienceOn
13 A. I. Mills, Phys. Rev. B., 55, 6405 (1997)   DOI   ScienceOn
14 K. M. Satyalakshmi, R. M. Mally, K. V. Ramanathan, X. D. Wu, K. Brainard, D. C. Gautier, N. Y. Vasanthachary and M. S. Hegde, Appl. Phys. Lett., 62, 1223 (1993)   DOI   ScienceOn
15 J. Zaanen, G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett., 55, 418 (1985)   DOI   ScienceOn
16 S. R. Barman, A. Chainani and D. Sarma, Phys. Rev. B., 49, 8475 (1994)   DOI   ScienceOn
17 J. K. Vassiliou, M. Hornsbostel, R. Ziebarth and F. J. Disalvo, J. Solid. State Chem., 81, 208 (1989)   DOI   ScienceOn
18 K. Sreedhar, J. M. Honig, M. Darwin, M. McElfresh, P. M. Shand, J. Xu, B. C. Crooker and J. K. Spalek, Phys. Rev. B., 46, 6328 (1992)   DOI   ScienceOn
19 J. Blasco, M. Castro and J. Garcia, J. Phys.: Condens. Matter., 6, 5875 (1994)   DOI   ScienceOn
20 N. Gayathri, A. K. Raychaudhuri, X. Q. Xu, J. L. Peng and R. L. Greene, J. Phys.: Condens. Matter., 10, 1323 (1998)   DOI   ScienceOn
21 T. T. M. Palsta., A. P. Ramirez, S. W. Cheong, B. R. Zegarski, P. Schiffer and J. Zaanen, Phys. Rev. B., 56, 5140 (1997)   DOI
22 N. F. Mott, Adv. Phys., 39, 55 (1990)   DOI   ScienceOn
23 N. F. Mott, J. Phys.: Condens. Matter., 5, 3487 (1993)   DOI   ScienceOn
24 P. Brahma, S. Banerjee, S. Chakraborty and D. Chakravorty, J. Appl Phys., 88, 6526 (2000)   DOI   ScienceOn
25 B. C. Zhao, Y. P. Sun, W. J. Lu, J. Yang, X. B. Zhu and W. H. Song, Solid State Comm., 139, 209 (2006)   DOI   ScienceOn
26 Y. Furukawa and S. Wada, J. Phys. Soc. Jap., 61, 1182 (1992)   DOI
27 W. H. Jung, J. Phys.: Condens. Matter., 10, 8553 (1998)   DOI   ScienceOn
28 S. Wang, K. Li, Z. Chen and Y. Zhang, Phys. Rev. B., 61, 575 (2000)   DOI   ScienceOn
29 M. Medarde, A. Fontaine, J. L. Garcia, J. Rodriguez, M, de Santis, M. Sacchi, G. Rossi and P. Lacorre, Phys. Rev. B., 46, 14975 (1992)   DOI   ScienceOn
30 G. J. Snyder, C. H. Booth, F. Bridges, R. Hiskes, S. DiCarolis, M. R. Beasley and T. H. Geballe, Phys. Rev. B., 55, 6453 (1998)   DOI   ScienceOn
31 K. P. Rajeev, G. V. Shivashankar and A. K. Raychaudhuri, Solid State Comm., 79, 591 (1991)   DOI   ScienceOn
32 J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo and C. H. Nidermayer, Phys. Rev. B., 45, 8209 (1992)   DOI   ScienceOn
33 W. H. Jung, J. H. Sohn, J. H. Lee. J. H. Sohn, M. S. Park, and S. H. Cho, J. Am. Ceram. Soc., 83, 797 (2000)   DOI   ScienceOn
34 A. I. Mills, Phys. Rev. B., 53, 8434 (1996)   DOI   ScienceOn