Browse > Article
http://dx.doi.org/10.3740/MRSK.2009.19.11.619

Effect of Grain Refinement on Tensile Properties of Ti-15-3 Alloy  

Lee, Chan-Young (Department of Materials Science and Engineering, Yonsei University)
Park, Young-Min (Department of Materials Science and Engineering, Yonsei University)
Lee, Young-Kook (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Korean Journal of Materials Research / v.19, no.11, 2009 , pp. 619-624 More about this Journal
Abstract
Titanium alloys have been attractive due to a high ratio of strength to weight as well as good corrosion resistance. However, strengthening causes a decrease in ductility in Ti alloys, as is usual in other alloys. For enhanced strength without ductility reduction, grain refinement and tensile properties were investigated as functions of thickness reduction of cold rolling and annealing condition in Ti-15V-3Cr-3Sn-3Al alloy with a ${\beta}$ single phase. The average grain size of the specimen, which was cold-rolled by 90% and annealed at 700$^{\circ}C$ for 5 min, was decreased to approximately 19 ${\mu}m$. The grain refinement of 63 μm to 19 ${\mu}m$ increased yield stress by 90 MPa without a significant decrease in total elongation. The Ti-15-3 alloy exhibited very low work hardening during tensile test at a crosshead speed of 2 mm/min. This result was discussed based on dynamic recovery associated with dislocation annihilation in grain boundaries.
Keywords
Ti-15-3; recrystallization; grain size; yield stress;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 M. Wang and A. Shan, J. Alloys Compd., 455, 10 (2008)   DOI   ScienceOn
2 T. Furuhara, Met. Mater. Int. 6, 221 (2000)   DOI
3 K. T. Park and D. H. Shin, Metall. Mater. Trans. A, 33A, 705 (2002)   DOI
4 R. Z. Valiev, E. V. kozlov, Yu. F. Ivanov, J. Lian, A. A. Nazarov and B. Baudelet, Acta Metall. Mater. 42, 2467 (1993)   DOI   ScienceOn
5 H. Gleiter, Acta Mater. 48, 1 (2000)   DOI   ScienceOn
6 M. E. Rosenblum, A. Shames and W. B. Treppel, Beta Titanium Alloys in the 1980's, ed., R. R. Boyer and H. W. Rosenberg, TMS-AIME, 307 (1983)
7 R. Z. Valiev, Mater. Sci. Eng. A234-236, 59 (1997)   DOI   ScienceOn
8 D. G. Robertson and H. B. McShane, Mater. Sci. Tech. 13, 575 (1997)   DOI   ScienceOn
9 J. W. Christian, Scripta Metall. 4, 803 (1970)   DOI   ScienceOn
10 K. T. Park, S. Y. Han, D. H. Shin, Y. K. Lee, K. J. Lee and K. S. Lee, ISIJ Inter. 44, 1057 (2004)   DOI   ScienceOn
11 J.W. Lee, B.H. Lee, K.H. Lee and Y.D. Kim, Korean Journal of Materials Research 14, 13 (2004)   과학기술학회마을   DOI   ScienceOn
12 M. Okada, ISIJ Int. 31, 834 (1991)   DOI
13 T. Furuhara, T. Maki and T. Makino, J. Mater. Pro. Tech. 117, 318 (2001)   DOI   ScienceOn
14 C. Ouchi, H. Suenaga and Y. Kohsaka, in Proceedings Sixth World Conference on Titanium(Paris, France, 1989), ed., P. Lacombe et al., Les Editions de Physique, Paris, p.819
15 H. Gleiter, Prog. Mater. Sci. 33, 223 (1985)   DOI   ScienceOn
16 R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov, Prog. Mater. Sci. 45, 103 (2005)   DOI   ScienceOn
17 R. W. Armstrong, Metall. Trans 1, 1169 (1970)   DOI
18 S. J. Kim, B. H. Choe and M. Hagiwara, J. Kor. Inst. Met. Mater. 35, 880 (1997)
19 Y. Wang, M. Chen, F. Zhou and E. Ma, Nature 419, 912 (2002)   DOI   ScienceOn