Browse > Article
http://dx.doi.org/10.3740/MRSK.2008.18.3.123

Synthesis of SnO2Microrods by the Thermal Evaporation of Sn Powders  

Kong, Myung-Ho (School of Materials Science and Engineering, Inha University)
Kim, Hyoun-Woo (School of Materials Science and Engineering, Inha University)
Publication Information
Korean Journal of Materials Research / v.18, no.3, 2008 , pp. 123-127 More about this Journal
Abstract
The production of tin oxide ($SnO_2$) microrods on iridium (Ir)-coated substrates was achieved through the thermal evaporation of Sn powders in which a sufficiently high $O_2$ partial pressure was employed. Scanning electron microscopy revealed that the product consisted of microrods with diameters that ranged from 0.9 to $40\;{\mu}m$. X-ray diffraction, high-resolution transmission electron microscopy, and selected area electron diffraction indicated that the microrods were $SnO_2$ with a rutile structure. As the microrod tips were free of metal particles, it was determined that the growth of $SnO_2$ microrods via the present route was dominated by a vapor-solid mechanism. The thickening of rod-like structures was related to the utilization of sufficiently high $O_2$ partial pressure during the synthesis process, whereas low $O_2$ partial pressure facilitated the production of thin rods.
Keywords
$SnO_2$; chemical synthesis; transmission electron microscopy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 D.-F. Zhang, L.-D. Sun, J.-L. Yin and C.-H. Yan, Adv. Mater., 15, 1022 (2003)   DOI   ScienceOn
2 Z. R. Dai, Z. W. Pan and Z. L. Wang, J. Am. Chem. Soc., 124, 8673 (2002)   DOI   ScienceOn
3 Z. L. Wang, Adv. Mater., 15, 432 (2003)   DOI   ScienceOn
4 D. N. Srivastava, S. Chappel, O. Palchik, A. Zaban and A. Gedanken, Langmuir, 18, 4160 (2002)   DOI   ScienceOn
5 H. Miyata, M. Itoh, M. Watanabe and T. Noma, Chem. Mater., 15, 1334 (2003)   DOI   ScienceOn
6 E. R. Leite, I. T. Weber, E. Longo and J. A. Varela, Adv. Mater., 12, 966 (2000)   DOI
7 S. Ferrere, A. Zaban and B. A. Gsegg, J. Phys. Chem., B101, 4490 (1997)   DOI   ScienceOn
8 R.-Q. Zhang, Y. Lifshitz and S.-T. Lee, Adv. Mater., 14, 1029 (2003)   DOI
9 A. Kolmakov, Y. Zhang, G. Cheng and M. Moskovits, Adv. Mater., 15, 997 (2003)   DOI   ScienceOn
10 J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee and S. T. Lee, J. Phys. Chem., B106, 3823 (2002)   DOI   ScienceOn
11 J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee and S. T. Lee, J. Phys. Chem. B106, 3823 (2002)   DOI   ScienceOn
12 Y. Liu, C. Zheng, W. Wang, C. Yin and G. Wang, Adv. Mater., 13, 1883 (2001)   DOI
13 C. Xu, G. Xu, Y. Liu, X. Zhao and G. Wang, Scr. Mater., 46, 789 (2002)   DOI   ScienceOn
14 Z. R. Dai, Z. W. Pan and Z. L. Wang, Solid State Commun., 118, 351 (2001)   DOI   ScienceOn
15 Z. L. Wang and Z. Pan, Adv. Mater., 14, 1029 (2002)   DOI
16 X. S. Peng, L. D. Zhang, G. W. Meng, Y. T. Tian, Y. Lin, B. Y. Geng and S. H. Sun, J. Appl. Phys., 93, 1760 (2003)   DOI   ScienceOn
17 M. Zhang, G. Li, X. Zhang, S. Huang, Y. Lei and L. Zhang, Chem. Mater., 13, 3859 (2001)   DOI   ScienceOn
18 Z. Zhong, Y. Yin, B. Gates and Y. Xia, Adv. Mater., 12, 206 (2000)   DOI
19 Y. S. He, J. C. Campbell, R. C. Murphy, M. F. Arendt and J. S. Swinnea, J. Mater. Res., 8, 3131 (1993)   DOI
20 G. Sberveglieri, Sensor Actuators, B6, 64 (1992)
21 C. K. Xu, X. L. Zhao, S. Liu and G. H. Wang, Solid State Commun., 125, 301(2003)   DOI   ScienceOn
22 H. W. Kim and S. H. Shim, J. Korean Phys. Soc., 47, 516 (2005)
23 Z. R. Dai, Z. W. Pan and Z. L. Wang, Adv. Funct. Mater., 13, 9 (2003)   DOI   ScienceOn