Browse > Article
http://dx.doi.org/10.3740/MRSK.2008.18.12.673

Structural Study of Oxygen Vacancy in CaO Stabilized Cubic-HfO2 Using Density Functional Theory  

Kim, Jong-Hoon (Department of Materials Engineering, Korea University of Technology and Education)
Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education)
Lee, Byeong-Eon (Department of Materials Engineering, Korea University of Technology and Education)
Hwang, Jin-Ha (Department of Materials Science Engineering, Hongik University)
Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
Publication Information
Korean Journal of Materials Research / v.18, no.12, 2008 , pp. 673-677 More about this Journal
Abstract
Calcia (CaO) stabilized cubic-$HfO_2$ is studied by density functional theory (DFT) with generalized gradient approximation (GGA). When a Ca atom is substituted for a Hf atom, an oxygen vacancy is produced to satisfy the charge neutrality. The lattice parameter of a $2{\times}2{\times}2$ cubic $HfO_2$ supercell then increases by $0.02\;{\AA}$. The oxygen atoms closest to the oxygen vacancy are attracted to the vacancy as the vacancy is positive compared to the oxygen ion. When the oxygen vacancy is located at the site closest to the Ca atom, the total energy of $HfO_2$ reaches its minimum. The energy barriers for the migration of the oxygen vacancy were calculated. The energy barriers between the first and the second nearest sites, the second and the third nearest sites, and the third and fourth nearest sites are 0.2, 0.5, and 0.24 eV, respectively. The oxygen vacancies at the third and fourth nearest sites relative to the Ca atom represent the oxygen vacancies in undoped $HfO_2$. Therefore, the energy barrier for oxygen migration in the $HfO_2$ gate dielectric is 0.24 eV, which can explain the origin of gate dielectric leakage.
Keywords
DFT calculation; cubic-$HfO_2$; CaO substitution; oxygen migration;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 K. Yamamoto, S. Hayashi, M. Niwa, M. Asai, S. Horii, and H. Miya, Appl. Phys. Lett., 83, 2229 (2003)   DOI
2 A. Lakhlifi, C. Leroux, P. Satre, B. Durand, M. Roubin and G.Nihoul, J. Solid State Chem., 119, 289 (1995)   DOI   ScienceOn
3 M. H. Hakala, A. S. Foster, J. L. Gavartin, P. Havu, M. J. Puska and R. M. Nieminen, J. Appl. Phys., 100, 043708 (2006)   DOI   ScienceOn
4 G. Kresse and J. Hafner, Phys. Rev. B, 47, 558 (1993)   DOI   ScienceOn
5 G. Kresse and J. Furthmuller, Phys. Rev. B, 54, 11169 (1996)   DOI   ScienceOn
6 P. Pulay, Chem. Phys. Lett., 73, 393 (1980)   DOI   ScienceOn
7 G. Kresse and J. Furthmuller, Comput. Mat. Sci., 6, 15 (1996)   DOI   ScienceOn
8 G. Kresse and D. Joubert, Phys. Rev. B, 59, 1758 (1999)   DOI   ScienceOn
9 D. M. Wood, and A. Zunger, J. Phys. A, 18, 1343 (1985)   DOI   ScienceOn
10 C. Lee, J. Choi, M. Cho, J. Park, C. S. Hwang, H. J. Kim, J. Jeong and W. Lee, Appl. Phys. Lett., 83, 1403 (2003)   DOI   ScienceOn
11 S. J. Wang, P. C. Lim, A. C. H. Huan, C. L. Liu, J. W. Chai, S. Y. Chow, J. S. Pan, Q. Li and C. K. Ong, Appl. Phys. Lett., 82, 2047 (2003)   DOI   ScienceOn
12 G. Moore. The biggest change in transistor technology in 40 years. Intel Home Page. Retrieved January, 2006 from http://www.intel.com/technology/architecture-silicon/45nm-core2/index.htm
13 C. E. Curtis, L. M. Doney and J. R. Johnson, J. Am. Ceram. Soc., 37, 458 (1953)   DOI
14 M. Balog, M. Schieber, M. Michiman and S. Patai, Thin Solid Films, 41, 247 (1977)   DOI   ScienceOn
15 R. Ruh and P.W.R. Corfield, J. Am. Ceram. Soc., 53, 126 (1970)   DOI
16 D.M. Adams, S. Leonard, D.R. Russel, and R.J. Cernik, J. Phys. Chem. Solids, 52, 1181 (1991)   DOI   ScienceOn
17 J. R. Chavez, R. A. B. Devine and L. Koltunski, J. Appl. Phys., 90, 4284 (2001)   DOI   ScienceOn
18 C. Tang, B. Tuttle and R. Ramprasad, Phys. Rev. B, 76, 073306 (2007)   DOI   ScienceOn