Browse > Article
http://dx.doi.org/10.3740/MRSK.2008.18.11.577

Formation of Solidification and Eutectic Microstructures with Solidification Rates in the Single Crystal Superalloy CMSX 10  

Lee, Je-Hyun (Department of Materials Science and Engineering, Changwon National University)
Publication Information
Korean Journal of Materials Research / v.18, no.11, 2008 , pp. 577-582 More about this Journal
Abstract
Directional solidification experiments were carried out at $1-300\;{\mu}m/sec$ solidification rates in the single crystal superalloy, CMSX 10. The solid/liquid interface morphology changed from planar to dendritic, and the dendrite spacing became finer as the solidification rate increased. The pool size of the ${\gamma}/{\gamma} eutectic, formed between dendrites, reduced as the solidification rate increased. The phase formation temperatures, such as the solidus, liquidus and eutectic, were estimated by differential scanning calorimetry (DSC) analysis. The morphology of the ${\gamma}/{\gamma} phase, known to be eutectic, showed ${\gamma} cells with a $\gamma$ intercellular network, and this ${\gamma}/{\gamma} was composed of coarse and fine ${\gamma}/{\gamma} regions. In this study, it is suggested that the ${\gamma}/{\gamma} phase was a coupled peritectic.The solidification procedure of the ${\gamma}/{\gamma} between dendrites is also discussed.
Keywords
single crystal superalloy; Eutectic; Dendrite; Peritectic;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 W. S. Walston, K. S. O'hara, E. W. Ross, T. M. Pollock and W. H. Murphy, in Superalloys 1996 (Seven Springs, PA, September 1996), eds. R.D. Kissinger et al. (TMS, Warrendale, PA, USA, 1996) p.27
2 J. D. Verhoeven, Fundamentals of Physical Metallurgy, p.267, John Wiley & Sons, New York, (1975)
3 W. J. Boettinger, Metall. Trans., 5, 2023 (1974)   DOI
4 G. Brewster, H. B. Dong, N. B. Green, N. D'Souza, Met. Mat. Trans. B, 39B, 87 (2008)   DOI
5 W. Kurz and D. J. Fisher, Fundamentals of Solidification, p.83, Trans Tech Publications, Swizerland, (1989)
6 P. J. Haines, Thermal Methods of Analysis, p. 79, Blackie Academic and Professional, Glasgow UK, (1995)
7 S. M. Seo, I. S.Kim, J. H.Lee, C. Y.Jo, H. Miyahara, K. Ogi, in Superalloys 2008 (Seven Springs, PA, September 2008), eds. R. Reed et al. (TMS, Warrendale, PA, USA, 2008) p.277
8 N. D'Souza and H. B. Dong, Scripta Mat., 56, 41 (2007)   DOI   ScienceOn
9 J. D. Verhoeven, J. H. Lee, F. C. Labbs, and L. L. Jones, J. Phase Equilibria., 22(1), 15 (1991)
10 B. B. Seth, in Superalloys 2000 (Seven Springs, PA, September 2000), eds. T. M. Pollock et al. (TMS, Warrendale, PA, USA, 2000) p.3
11 A. D. Cetel and D. N. Duhl, in Superalloys 1988 (Seven Springs, PA, September 1988), eds. D.N. Duhl et al. (TMS, Warrendale, PA, USA, 1988) p.235
12 T. M. Pollock, W. H. Murphy and J. S. Tueta, in Superalloys 1992 (Seven Springs , PA, September 1992), eds. S.D. Antolovich et al. (TMS, Warrendale, PA, USA, 1992) p.125
13 F. L. Versnyder and R. W. Guard, Trans. ASM, 52, 485 (1960)
14 G. L. Erickson, J. Metals, 47(4), 36 (1995)
15 A. Kermanpur, N. Varahram, P. Davami, and M. Rappaz, Metall. Mater. Trans B, 31B, 1293 (2000)   DOI   ScienceOn
16 M. C. Fleming, Solidification Processing, p.177, Mc Grow-Hill, New York,(1974)
17 M. McLean, Directionally Solidification Material for High Temperature Service, p.33, The Metals Society, UK, (1983)
18 M. A. Eshelman, V. Seetharaman and R. Trivedi, Acta Metall., 36, 1165 (1988)   DOI   ScienceOn
19 J. H. Lee, J. D. Verhoeven, J. Crystal Growth, 144, 353 (1994)   DOI   ScienceOn