Browse > Article
http://dx.doi.org/10.3740/MRSK.2007.17.2.100

Effect of MgO-P2O5 Sintering Additive on Microstructure of Sintered Hydroxyapatite (HAp) Bodies and Their In-Vitro Study  

Lee, Byong-Taek (School of Advanced Materials Engineering, Kongju National University)
Youn, Hyeong-Chul (School of Advanced Materials Engineering, Kongju National University)
Lee, Chi-Woo (School of Advanced Materials Engineering, Kongju National University)
Song, Ho-Yeon (Department of Microbiology, School of Medicine, Soonchunhyang University)
Publication Information
Korean Journal of Materials Research / v.17, no.2, 2007 , pp. 100-106 More about this Journal
Abstract
The effects of $MgO-P_2O_5$ based sintering additive on the microstructure and material and biological properties of hydroxyapatite $(HAp,\;Ca_{10}(PO_4)_6(OH)_2)$ ceramic were investigated using XRD, SEM and TEM techniques. The $MgO-P_2O_5$ sintering additive improved the material properties and increased the grain size in the sintered HAp bodies. As the content of sintering additive increased over 4 wt%, a small amount of the HAp phase was decomposed and transformed to ${\beta}-TCP$. In the 2 wt% $MgO-P_2O_5$ content HAp sintered body, the maximum values of density and hardness were respectively about 3.10 gm/cc and 657 HV. However, the maximum fracture toughness in the HAp body containing 8 wt% $MgO-P_{2}O_{5}$ was about $1.02MPa{\cdot}m^{1/2}$ due to the crack deflection effect. Human osteoblast like MG-63 cells and osteoclast like raw 264.7 cells were well grown and fully covered all of the HAp sintered bodies. The osteoblast cells were grown with spindle-shaped and the osteoclast cells had a grape-like round shape.
Keywords
Hydroxyapatite; Sintering additive; $MgO-P_2O_5$; Microstructure; In-vitro study;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 K. J. L. Burg, S. Porter and J. F. Kellam, Biomaterials, 21, 2347 (2000)   DOI   ScienceOn
2 E. Adolfsson, P. Alberiushenning and L. Hermansson, J. Am. Ceram. Soc., 83, 2798 (2000)
3 L. L. Hench, J. Am. Ceram. Soc., 74, 1487 (1991)   DOI
4 R. Z. Legeros, S. Lin, R. Rohanizadeh, D. Mijares and J. P. Legeros, J. Mater. Sci. Mater. Med., 14, 201 (2003)   DOI   ScienceOn
5 C. Ribeiro, E. C. S. Rigo, P. Sepulveda, J. C. Bresslani and A. H. A. Bresslani, Mater. Sci. Eng., C 24, 631 (2004)   DOI   ScienceOn
6 L. L. Hench, J. Am. Ceram. Soc., 81, 1705 (1998)
7 M. A. Lopes, F. J. Monteiro and J. D. Santos, Biomaterials, 20, 2085 (1999)   DOI   ScienceOn
8 S. J. Kalita, S. Bose, H. L. Hosick and A. Bandopadhya, Biomaterials, 25, 2331 (2004)   DOI   ScienceOn
9 A. K. Dash and G. C. Cudworth, J. Pharmacol. Toxicol. Method, 40, 1 (1998)   DOI   ScienceOn
10 W. Suchanek and M. Yoshimura, J. Mater. Res., 13, 94 (1998)   DOI   ScienceOn
11 J. D. Santos, J. C. Knowles, R. L. Reis, F. J. Monteiro and G W. Hastindgs, Biomaterials, 15, 5 (1994)   DOI   ScienceOn
12 J. C. Knowless, S. Talal and J. D. Santos, Biomaterials, 17, 1437 (1996)   DOI   ScienceOn
13 P. Ducheyne and Q. Qiu, Biomaterials, 20, 2287 (1999)   DOI   ScienceOn
14 F. Watari, A. Yokoyama, F. Saso, M. Uo and T. Kawasaki, Comp. Part B, 28B, 5 (1997)   DOI   ScienceOn