Browse > Article
http://dx.doi.org/10.3740/MRSK.2007.17.10.560

Effects of Y2O3 and Al2O3 Addition on the Properties of Hot Pressed AlN Ceramics  

Kong, Man-Sik (Plant Engineering Center, Institute for Advanced Engineering)
Hong, Hyun-Seon (Plant Engineering Center, Institute for Advanced Engineering)
Lee, Sung-Kyu (Division of Chemical and Materials Engineering, Ajou Universty)
Seo, Min-Hye (Plant Engineering Center, Institute for Advanced Engineering)
Jung, Hang-Chul (Plant Engineering Center, Institute for Advanced Engineering)
Publication Information
Korean Journal of Materials Research / v.17, no.10, 2007 , pp. 560-566 More about this Journal
Abstract
AlN plates were fabricated by hot pressing at $1700-1900^{\circ}C$ using yttria and alumina (3 and $10\;{\mu}m$ particle size) powders as additives and characterized: density, thermal conductivity, transverse rupture strength, and grain size measurement by SEM and EDS. Density values of $3.31-3.34\;g/cm^3$ are largely attributed to hot pressing of powder mixtures in carbon mold under $N_2$ atmosphere which caused effective degree of oxygen removal from yttrium-aluminate phase expected to form at $1100^{\circ}C$. The grain size of hot pressed AlN was almost homogeneous, with size approximately from 3.2 to $4.0\;{\mu}m$ after hot pressing. $Al_2O_3$ powder of $3\;{\mu}m$ particle size resulted in better transverse rupture strength and finer grain size compared to $10\;{\mu}m$ $Al_2O_3$ powder. The thermal conductivity of AlN ranged between $83-92.7\;W/m{\cdot}K$ and decreased with $Al_2O_3$ addition. Fine grain size is preferred for better mechanical properties and thermal conductivity.
Keywords
AlN (Aluminum Nitride); Hot pressing; Sintering; Thermal conductivity; Transverse Rupture Strength;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 L. Qiao, H. Zhou, H. Xue, S. Wang, J. Eur. Ceram. Soc., 23, 61 (2003)   DOI   ScienceOn
2 S. Kume, M. Yasuoka, S.-K. Lee, A. Kan, H. Ogawa, K. Watari, J. Eur. Ceram. Soc., 27 (2007) 2967   DOI   ScienceOn
3 Y. W. Kim, H. C. Park, Y. B. Lee, K. D. Oh, R. Stevens, J. Eur. Ceram. Soc., 21 (2001) 2383   DOI   ScienceOn
4 J. S. Reed, Principles of Ceramic Processing, Second ed., p. 513, John Wiley & Sons, Inc., New York, USA, (1995)
5 L. Qiao, H. Zhou, K. Chen, R. Fu, J. Eur. Ceram. Soc., 23, 1517 (2003)   DOI   ScienceOn
6 A. Klimera, F. Raether, J. Ruska, J. Eur. Ceram. Soc., 27, 1419 (2007)   DOI   ScienceOn
7 X. Xu, H. Zhuang, W. Li, S. Xu, B. Zhang, X. Fu, Mat. Sci. Eng., A342, 104 (2003)   DOI   ScienceOn
8 G. A. Slack, L. J. Schowalter, D. Morelli, J. A. Freitas Jr., J. Cryst. Growth, 246, 287 (2002)   DOI   ScienceOn
9 S. Du, Z. Liu, L. Li, Z. Gui, Mater. Lett., 25 (1995) 105   DOI   ScienceOn
10 F. Boey, A. I. Y. Tok, Y. C. Lam, S. Y. Chew, Mat. Sci. Eng., A335, 281 (2002)   DOI   ScienceOn
11 H. Nakano, K. Watari, K. Urabe, J. Eur. Ceram. Soc., 23, 1761 (2003)   DOI   ScienceOn
12 C. Y. Hsieh, C. N. Lin, S. L. Chung, J. Cheng, D. K. Agrawal, J. Eur. Ceram, Soc., 27, 343 (2007)   DOI   ScienceOn
13 K. A. Khor, K. H. Cheng, L. G. Yu, F. Boey, Mat. Sci. Eng., A347, 300 (2003)   DOI   ScienceOn
14 F. Boey, L. Cao, K. A. Khor, Acta mater., 49 (2001) 3117   DOI   ScienceOn