Browse > Article
http://dx.doi.org/10.3740/MRSK.2006.16.1.063

Wet-etch Characteristics of ZnO Using Acidic Solutions  

Oh, Jung-Hoon (Department of Materials Science and Metallurgical Engineering, Sunchon National University)
Lee, Ji-Myon (Department of Materials Science and Metallurgical Engineering, Sunchon National University)
Publication Information
Korean Journal of Materials Research / v.16, no.1, 2006 , pp. 63-67 More about this Journal
Abstract
The characteristics of the wet-etching of ZnO thin films were investigated using hydrochloric and phosphoric acid solutions as etchants. The etch rate of ZnO films, using highly diluted hydrochloric acid solutions at a concentration of 0.25% in deionized water, was determined to be about 120 nm/min, and linearly increased with increasing the acid concentration, resulting in $1.17{\mu}m/min$ when a 2% HCl solution was used. The surface of ZnO etched by an HCl solution, observed by scanning electron microscopy, showed a rough morphology with a high density of hexagonal pyramids or cones with sidewall angles of about ${\sim}45^{\circ}C$. Moreover, the sidewall angles of the masked area were similar to those of the pyramids on the surface. In comparison, the surface of ZnO etched by a phosphoric acid had a smooth surface morphology. The origin of this difference is from the very initial stage of etching, indicating that the etch-mechanism is different for each solution. Furthermore, when $H_3PO_4$ was added to the HCl aqueous solution, the morphology of the etched surface was greatly enhanced and the sidewall angle was also increased to about $65^{\circ}C$.
Keywords
etch; microstructure; surface roughness; hexagonal pyramid; ZnO;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano and H. Hosono, Science, 300, 1269 (2003)   DOI   ScienceOn
2 J. F. Wager, Science, 300, 1245, (2003)   DOI   ScienceOn
3 J. Lim, K. Shin and C. Lee, Kor. J. Mater. Res., 14, 363 (2004)   과학기술학회마을   DOI
4 J. M. Lee, K. K. Kim, S. J. Park and W. K. Choi, Appl. Phys, Lett., 78, 3842 (2001)   DOI   ScienceOn
5 H. W. Suh, D. Byun and W. K. Choi, Kor. J. Mater. Res., 13, 347 (2003)   과학기술학회마을   DOI
6 W. H. Yoon, J. M. Myoung, D. H. Lee, S. H. Bae, I. Yun and S. Y. Lee, Kor. J. Mater. Res., 11, 319 (2001)   과학기술학회마을
7 Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Appl. Phys. Lett., 72, 3270 (1998)   DOI   ScienceOn
8 E. Harush, S. Brandon, J. Salzman and Y. Paz, Semicon. Sci. Technol, 17, 510 (2002)   DOI   ScienceOn
9 D. W. Shaw, J. Electrochem. Soc., 113, 958 (1966)   DOI
10 S. S. Tan, M. Ye and A. G. Millins, Solid-State Electron., 38, (1995)   DOI   ScienceOn
11 Y. Gao, T. Fuji, R. Sharma, K. Fujito, S. P. Denbarrs, S. Nakamura and E. L. Hu, Jpn. J. Appl. Phys., 43, L637, (2004)   DOI   ScienceOn
12 J. Zhu, W. W. Emanetoglu, Y. Chen, B. V. Yakshinskiy and Y. Lu, J. Electron, Mater., 33, 556 (2004)   DOI   ScienceOn
13 C. G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000)   DOI   ScienceOn
14 A. N. Mariano and R. E. Hanneman, J. Appl. Phys., 34, 384 (1963)   DOI
15 S. C. Chang, D. B. Hicks and R. C. O. Laugal, in Solit-State Sensor Actuator Workshop (New York, 1992) (IEEE, New Jersey, 1992), p. 41   DOI
16 M. J. Vellekoop, C. C. O. Visser, P. M. Sarro and A. Venema, Sensor. Actuat. A, 23, 1027 (1990)   DOI   ScienceOn