Browse > Article
http://dx.doi.org/10.3740/MRSK.2006.16.1.001

The Influence of β-TCP Content on the Preparation of Biodegradable β-TCP/PLGA Composites Using Microwave Energy  

Jin, Hyeong-Ho (School of Materials Science and Engineering, Pusan National University)
Min, Sang-Ho (School of Materials Science and Engineering, Pusan National University)
Park, Hong-Chae (School of Materials Science and Engineering, Pusan National University)
Yoon, Seog-Young (School of Materials Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.16, no.1, 2006 , pp. 1-4 More about this Journal
Abstract
Biodegradable $\beta$-tricalcium phosphate ( $\beta$-TCP)/poly(lactide-co-glycolide) (PLGA) composites were synthesized by in-situ polymerization with microwave energy. The influence of the $\beta$-TCP content in $\beta$-TCP/PLGA composites on the molecular weight, crystallinity, microstructure and mechanical properties was investigated. As the molecular weight of composites decreased, the $\beta$-TCP content increased up to 10 wt.%, while the excess addition of the $\beta$-TCP content above 10 wt.% the molecular weight increased with increasing of the $\beta$-TCP content. This behavior would be due to the superheating effect or nonthermal effect induced by microwave energy. It was found that the bending strength and Young's modulus of the $\beta$-TCP/PLGA composites was proportional to the molecular weight of PLGA. The bending strength of the $\beta$-TCP/PLGA composites ranged from 18 to 38 MPa, while Young's modulus was in the range from 2 to 6 GPa.
Keywords
$\beta$-TCP/PLGA; composites; microwave; biodegradation; in-situ polymerization;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Z. Wang, S. Wang, Y. Marois, R. Guidoin and Z. Zhang, Biomaterials, 26, 7387 (2005)   DOI   ScienceOn
2 L. E. Claes, Clin. Mater., 10, 41 (1992)   DOI   ScienceOn
3 T. Kissel, Y. Li and F. Unger, ad. Drug. Deliv. Reviews, 54, 99 (2002)   DOI   ScienceOn
4 Z. Cheng, X. Zhu, N. Zhou, J. Zhu and Z. Zhang, Rad. Phy. Chem., 72, 695 (2005)   DOI   ScienceOn
5 J. Liu, K. Li, H. Wang, M. Zhu and H. Yan, Chem, Phy. Lett., 396, 429 (2004)   DOI   ScienceOn
6 Z. Yang, Y. Jiang, Y. Wang, L. Ma and F. Li, Mater. Lett., 58, 3586 (2004)   DOI   ScienceOn
7 I. J. Chabinsky, Application of Microwave energy past present and future, Materials Research Society, Bittsburgh, 107 (1998)
8 K. Kesenci, L. Fambri, C. Migliaresi and E. Piskin, J. Biomater. Sci. Polymer Edn., 11, 617 (2000)   DOI   ScienceOn
9 J. U. Im, S. S. Hong, G. D. Lee and S. S. Park, Korean. Chem. Eng. Res., 42, 485 (2004)
10 R. J. Yong and P. A. Lovell, Introduction to Polymers, Chapman-Hall, 69 (1995)
11 L. Perreux and A. Loupy, Tetrahedron, 57, 9199 (2001)   DOI   ScienceOn
12 R. Saillard, M. Poux and J. Berlan, Tetrahedron, 51, 4033 (1995)   DOI   ScienceOn
13 J. Jacob, L. H. L. Chia and F. Y. C. Boey, J. Mater. Sci, 30, 5321 (1995)   DOI
14 J. H. Lee, Y. H. Lee, D. S. Lee, Y. K. Lee and J. D. Nam, Polymer(Korea), 29, 375 (2005)   과학기술학회마을
15 S. A. Seo, H. S. Choi, G. Khang, J. M. Rhee and H. B. Lee, Inter. J. Pharm., 239, 93 (2002)   DOI   ScienceOn
16 N. Koc, M. Timucin and F. Korkusuz, Ceram. Int., 30, 205 (2004)   DOI   ScienceOn
17 S.H. Kwon, Y. K. Jun, S.H. Hong and H. E. Kim, J. Eur. Ceram. Soc., 23, 1039 (2003)   DOI   ScienceOn
18 K. Dillen, J. Vandervoort, G. V. der Mooter, L. Verheyden and A. Ludwig, Inter. J. Pharm., 275, 171 (2004)   DOI   ScienceOn
19 D.B. Marshall, T. Noma and A. G. Evans, J. Am. Ceram. Soc., 65, 175 (1982)   DOI
20 W. H. Akeson, S. L. Woo, L. Rutherford, R. D. Coutts, M. Gonslaves and D. Amiel, Acta. Orthop. Scand., 47, 241(1976)   DOI
21 K. T. Nguyen, N. Shaikh, K. P. Shukla, S. H. Su, R. C. Ederhart and L. Tang, Biomaterials, 25, 5333 (2004)   DOI   ScienceOn
22 A. A. Ignatitus, P. Augat and L. E. Claes, J. Biomater. Sci. Polymer Edn., 12, 185 (2001)   DOI   ScienceOn