Browse > Article
http://dx.doi.org/10.3740/MRSK.2005.15.9.594

Characteristics of ZrN Films Deposited by Remote PEALD Method Using TDEAZ Precursor  

Cho Seung Chan (School of Materials Science and Engineering, Pusan National University)
Hwang Yoon Cheol (School of Materials Science and Engineering, Pusan National University)
Lee Keun Woo (Division of Materials Science & Engineering, Hanyang University)
Han Se Jin (Division of Materials Science & Engineering, Hanyang University)
Kim In Bae (School of Materials Science and Engineering, Pusan National University)
Jeon Hyeongtag (Division of Materials Science & Engineering, Hanyang University)
Kim Yangdo (School of Materials Science and Engineering, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.15, no.9, 2005 , pp. 594-597 More about this Journal
Abstract
The barrier characteristics of ZrN films deposited by remote plasma enhanced atomic layer deposition(PEALD) using TDEAZ and $N_2$ remote plasma have been investigated under various deposition conditions such as temperatures, plasma power and processing pressures. ZrN films showed generally improved properties as the processing temperature, pressure and plasma power increased. The optimized processing temperature, plasma power and pressure were $300^{\circ}C$, 200 Watt and 1 torr. respectively ZrN films deposited at the optimized processing conditions showed the carbon contents and resistivity of $6at.\%$ and $400{\mu}{\Omega}cm$ respectively.
Keywords
remote PEALD; ZrN films; diffusion barrier;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Kubaschewski, E. L. U. Evans and D. B. Alock, Metallurgical Thermochemistry (Pergamon, Oxford, 1967)
2 G. V. Samsonov, Sov. Phys. Tech. Phys., 1, 695 (1967)
3 M. A. Nicolet, and S. S. Lau, in VLSI Electronics: Microstructure Science, edited by N. Einspruch and G. Larrabee (Academic, New york, 1978)
4 N. Toyama, Solid State Electron, 26, 37 (1983)   DOI   ScienceOn
5 N. Yokoyama, K. Hinode and Y. Homma, J. Electrochem. Soc., 136, 882 (1989)   DOI
6 M. Takeyama, A. Noya and K. Sakanishi, J. Vac. Sci. Technol., B 18, 1333 (2000)   DOI   ScienceOn
7 J. O. Olowolafe, C. J. Mogab, R. B. Gregort and M. Kottke, J. Appl. Phys., 72, 4099 (1992)   DOI
8 M. Boumerzong, Z. Pang, M. Boudreau and P. Masher, Appl. Phys. Lett., 66, 302 (1995)   DOI   ScienceOn
9 M. T. Schulberg, M. D. Allendorf and D. A. Outka, J. Vac. Sci. Technol., A 14(6), 3228 (1996)   DOI   ScienceOn
10 M. Ritala, M. Leskel, E. Rauhala and J. Jokinen, J. Electrochem. Soc., 145(8), 2914 (1998)   DOI
11 M. H. Tasi, S. C. Sun, C. E. Tsai, S. H. Chuang and H. T. Chiu, J. Appl. Phys., 79, 6932 (1996)   DOI
12 M. Uekubo, T. Oku, K. Nii, M. Murakami, K. Takashiro, S. Yamaguchi, T. Nakano and T. Ohta, Thin Solid Films, 286, 170 (1996)   DOI   ScienceOn
13 T. Oku, E. Kawakami, M. Uekubo, K. Takahiro, S. Yamaguchi and M. Murakami, Appl. Surf. Sci., 99, 265 (1996)   DOI   ScienceOn
14 A. S. Grove, Physics and technology of semiconductor devices, p. 40, Wiley, New York (1967)
15 Semiconductor Technology Handbook, 5th edition, Technology Associates, CA (1985)
16 Ivo J. Raaijmakers and A. Shennan, VMIC conference, 219 (1990)   DOI
17 J. D. McBrayer, Diffusion of metals in silicon dioxide, DARPA, MDA 901-82-k-0412 (1983)