Browse > Article
http://dx.doi.org/10.3740/MRSK.2005.15.11.735

Phase Transformation by Cu Diffusion of Electrolessly Deposited Ni-B Diffusion Barrier for Cu Interconnect  

Choi J. W. (Div. of Materials Science and Engineering, hanyang Univ.)
Hwang G. H. (Div. of Materials Science and Engineering, hanyang Univ.)
Song J. H. (Div. of Materials Science and Engineering, hanyang Univ.)
Kang S. G. (Div. of Materials Science and Engineering, hanyang Univ.)
Publication Information
Korean Journal of Materials Research / v.15, no.11, 2005 , pp. 735-740 More about this Journal
Abstract
The phase transformation of Ni-B diffusion barrier by Cu diffusion was studied. The Ni-B diffusion barrier, thickness of 10(Inn, was electrolessly deposited on the electroplated Cu interconnect. The specimens were annealed either in Ar atmosphere or in $H_2$ atmosphere from $300^{\circ}C\;to\;800^{\circ}C$ for 30min, respectively. Although the Ni-B coated specimens showed the decomposition of $Ni_3B$ above $400^{\circ}C$ in both Ar atmosphere and $H_2$ atmosphere, Ni-B powders did not show the decomposition of $Ni_3B$. The $Ni_3B$ was decomposed to Ni and B in hi atmospherr: and the metallic Ni formed the solid solution with Cu and the free B was oxidized to $B_2O_3$. However, both the boron hydride and free B were not observed in the diffusion barrier after the annealing in $H_2$ atmos There. These results revealed that the decomposition of $Ni_3B$ by Cu made the Cu diffusion continued toward the Ni-B diffusion barrier.
Keywords
electroless Ni-B deposition; diffusion barrier; decomposition; Cu interconnect;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. S. N. Sankara Narayanan and S. K. Seshadri, J. Alloys and Comp., 365, 197 (2004)   DOI   ScienceOn
2 H. Li, H. Li and J. F. Deng, Mater. Lett., Aug., 41 (2001)   DOI   ScienceOn
3 K. Masui, Met. Finish., 84, 33 (1986)
4 H. Zhang, X. Zhang and Y. K. Zhang, Plat. and Surf. Finish., 80(4), 80 (1993)
5 T. V. Gaevskaya, I. G. Novotortseva and L. S. Tsybulskaya, Met. Finish., 94, 100 (1996)   DOI   ScienceOn
6 K. Holloway, P. M. Fryer, C. Cabral Jr., J. M. E. Harper, P. J. Bailey and K. H. Kelleher, J. Appl. Phys., 71, 5433 (1992)   DOI
7 J. W. Choi, S. J. Hong, H. Y. Lee and S. G. Kang, Kor. J. Mat. Res., 13(2), 101 (2003)   DOI
8 S. Saito, K. Matsuda, K. Nishizawa and K. Sakiyama, Mater. Res. Soc., 319 (1987)
9 S. Q. Wang, I. Raaijmakers, B. J. Burrow, S. Suthar, S. Redkar and K. B. Kim, J. Appl. Phys., 68, 5176 (1990)   DOI
10 J. Imahori, T. Oku and M. Murakami, Thin Solid Films, 301, 142 (1997)   DOI   ScienceOn
11 M. Paunovic, P. J. Bailey, R. G. Schad and D. A. Smith, J. Electrochem. Soc., 141(7), 1843 (1994)   DOI
12 S. P. Murarka, I. V. Verner, and R. J. Gutmann, 'Copper Fundamental Mechanism for Microelectronic Applications', Wiley, New York, (2000)
13 X. W. Lin and D. Pramanlk, Solid State Technol., 63 (1998)
14 J. R. Lloyd and J. J. Clement, Thin Solid Films, 262, 135 (1995)   DOI   ScienceOn
15 D. S. Gardner, J. Onuki, K. Kudoo, Y. Misawa and Q. T. Vu, Thin Solid Films, 26, 104 (1995)   DOI   ScienceOn
16 S. T. Lin, Y. L. Kuo and C. Lee, Appl. Surf. Sci., 220, 349 (2003)   DOI   ScienceOn
17 H. K. Kang, I. Asano, C. Ryu and S. S. Wong, in 1993 VMIC Conf. Proc., 223 (1993)
18 H. Kizil and C. Steinbrucbel, Thin Solid Films, 449, 158 (2004)   DOI   ScienceOn
19 H. Ono, T. Nakano and T. Ohta, Appl. Phys. Lett., 64, 151 (1994)   DOI   ScienceOn
20 K. Yamashita and S. Odanaka, IEEE T. Electron Dev., 47, 90 (2000)   DOI   ScienceOn
21 B. Li, T. D. Sullivan, T. C. Lee, D. Badami, Microelectron. Reliab., 44, 365 (2004)   DOI   ScienceOn
22 A. K. Stamper, M. B Fushelier, X. Tian, 'Advanced wiring RC delay issues for sub-0.25-micron general CMOS' in 'Proceedings of Int. Interconnect Tech. Conf. (IITC)', 62 (1998)   DOI
23 S. P. Murarka, Solid State Technol., 3, 83-90 (1996)   DOI   ScienceOn
24 T. L. Alford, Y. Zeng, P. Nguyen, L. Chen and J. W. Mayer, Microelectron. Eng., 55, 389 (2001)   DOI   ScienceOn