Browse > Article
http://dx.doi.org/10.3740/MRSK.2004.14.3.211

Effect of Alloy Addition (Ta, Nb) on Oxidation Behavior of cp-Ti for Biomaterials  

Lee Doh-Jae (전남대학교 공과대학 금속공학과)
Oh Tae-Wook (전남대학교 공과대학 금속공학과)
Park Bum-Su (전남대학교 공과대학 금속공학과)
Kim Soo-Hak (전남대학교 공과대학 금속공학과)
Jun Choong-Geug ((주)금강기건 부설연구소)
Yoon Kye-Lim ((주)금강기건 부설연구소)
Publication Information
Korean Journal of Materials Research / v.14, no.3, 2004 , pp. 211-217 More about this Journal
Abstract
The oxidation behaviors of Ti-10Ta-10Nb alloy and Ti-6Al-4V alloy were studied in dry air atmosphere. Specimens were melted in consumable vacuum arc furnace and homogenized at $1050^{\circ}C$ for 24 h. Hot rolling was performed at $1000^{\circ}C$. Specimens of the alloys were oxidized as the temperature range $400~650^{\circ}C$ for 30 min. The oxidation behavior of the alloys was analysed by optical microscope, SEM/EDX, XRD, XPS and TGA. Immersion test was performed in 1% Lactic acid. In the microscope observation, oxide layer of Ti-10Ta-10Nb alloy was denser and thinner than Ti-6Al-4V's. The weight gains during the oxidation rapidly increased at the temperature above $600^{\circ}C$ in Ti-6Al-4V's alloy and$ 700^{\circ}C$ in Ti-10Ta-10Nb alloy. According to XRD results, oxide layers were composed of mostly $TiO_2$(rutile) phase. It was analysed that the passive film of the Ti alloys consisted of $TiO_2$ through X-ray photoelectron spectroscopy(XPS) analysis.
Keywords
Titanium; Oxidation; Biomaterials; Implant; Ti-6Al-4V; Ti-10Ta-10Nb;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. J. Park, D. K. Kim, K. H. Kim, Takao Hanawa, H. I. Kim, Y. S. Jung, J. Kor. Res. Soc. Den. Mater., 27(1), 43 (2000)
2 H. L. Du, P. K. Datta, D. B. Lewis and J. S. Burnell-Gray, Corros. Sci., 36(4), 631 (1994)   DOI   ScienceOn
3 T. Hurlen, J. Inst. Metals, 89, 128 (1960)
4 J. Black and G. Hastings, Handbook of Biomaterial Properties, p. 135, Chapman & Hall (1998)
5 R. J. Hanrahan Jr. and D. P. Butt, Oxidat. Met., 47(3/4), 317 (1997)   DOI
6 H. K. Kang and H. K. Cho, J. Kor. Inst. Met. Mater., 30(11), (1992)
7 Y. U. Kim and J. P. Jung, J. Kor. Foundrymen's Soc., 18(5), 76 (1998)
8 M. A. Daeubler, D. Helm and G. Lutjering, Titanium '95 Science and Technology, 709 (1995)
9 H. J. Cho and J. H. Lee, Kor. J. Mate. Res., 4, 626 (1994)
10 H. W. Maynor Jr., B. R. Barret and R. E. Swift, Corrosion, 12, 49-60, (1956)
11 L. Peiyng, T. Ye, P. Gen, C.Bocheng and L. Xiangyang, Surf. Coat. Technol., 128-129, 89 (2000)   DOI   ScienceOn
12 M. Yoshihara and K. Miura, Intermetallic, 3, 357 (1995)   DOI   ScienceOn
13 Y. Okazaki, Y. Ito, A. Ito and T. Tateishi, Biomaterials, 19, 1621 (1998)   DOI   ScienceOn
14 T. R. Yoon, S. M. Rowe, J. Y. Jung, E. K. Song and S. T. Jung, KOSOMBE, New Trends in Medical Imaging, 89 (2003)
15 J. H. Shin, K. H. Lee, C. H. Lee, J. Kor. Inst. Met. Mater., 39(2), 206 (2001)
16 D. Velten, V. Biehl, J. Biomed. Mater. Res., 59(1), 206 (2001)   DOI   ScienceOn
17 S. Yumoto, Int. J. of PIXE, World Scientific Publishing Company, 2(4), 493 (1992)   DOI
18 G. Farrar, J. A. Blair, P. Altmann, S. Welch, O. Wychrij, B. Ghose, J. Lejeune, J. Corbett and V. Prasher, Lancet, 335, 747 (1990)   DOI   ScienceOn
19 J. P. Landsberg, B. McDonald, and F. Watt, Nature(London), 360, 65 (1992)   DOI   ScienceOn
20 S. G. Steinemann, Evalution of Biomaterials, p 1, John Wiley & Sons Ltd., (1980)
21 A. N. Petrunko and V. M.Anokhin, Titanium 95 Science and Technology, 2, 1816 (1995)
22 Y. Okazaki, K. Kyo, Y. Ito and T. Tateishi, J. Jan. Inst. Metals, 59(10), 1061 (1995)   DOI
23 T. Ahmed, M. Long, J. Silvestri, C. Ruiz and H. J. Rack, Titanium 95 Science and Technology, 2, 1760 (1995)
24 J. S. Lee and J. Choi, Bull. Kor. Inst, Met. Mater., 7(3), 236 (1994)
25 Y. T. Lee and Y. T. Hyun, ibid., 8(3), 286 (1995)
26 K. Bordji and J. Y. Jouzeau, Biomaterials, 17(9), 929 (1996)   DOI   ScienceOn