Browse > Article
http://dx.doi.org/10.3740/MRSK.2003.13.3.200

Characterizing the Thermal Stability of TiSi2 Film by Using the Statistical Experimental Method  

Cheong, Seong-Hwee (Department of Materials Science and Engineering, The University of Seoul)
Song, Oh-Sung (Department of Materials Science and Engineering, The University of Seoul)
Publication Information
Korean Journal of Materials Research / v.13, no.3, 2003 , pp. 200-204 More about this Journal
Abstract
A statistical experiment method was employed to investigate the window of the thermal stability of $TiSi_2$films which are popular for Ti-salicide and ohmic layers. The statistical experimental results showed that the first order term of $TiSi_2$thickness and annealing temperature was acceptable as a function of $\Delta$resistivity by 95% reliability criteria, and R-sq value implying a fit accuracy of the model also showed a high value of 93.80%. We found that $\Delta$resistivity of the $TiSi_2$film annealed at $700^{\circ}C$ for 1 hr changed from 3.35 to $0.379\mu$$\Omega$$\cdot$cm with increasing thickness from 185 to $703\AA$, and TEX>$\Delta$resistivity of the $TiSi_2$film with a fixed thickness of 444 $\AA$ changed from 0.074 to 17.12 $\mu$$\Omega$$\cdot$cm with increasing temperature increase from 600 to $800^{\circ}C$. From these results, we report that the process conditions of$ 692^{\circ}C$-1 hr, $715^{\circ}C$-1 hr, and 73$0^{\circ}C$-1 hr for $TiSi_2$($400 \AA$) are stable by the criteria of 1, 2, and 3 $\mu$$\Omega$$\cdot$cm of $\Delta$resistivity, respectively.
Keywords
Ti deposition; statistics experiment design; resistivity; resistivity; agglomeration;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Prokop, C. E. Zybill, and S. Veprek, Thin Solid Films, 359, 39 (2000)   DOI   ScienceOn
2 C. Detavernier, R. L. V. Meirhaeghe, and F. Cardon, J. Appl. Phys., 88, 133 (2000)   DOI   ScienceOn
3 J. Chen, J. P. Colinge, D. Flandre, R. Gillon, J. P. Raskin, and D. Vanhoenacker, J. Electrochem. Soc., 144(7), (1997)   DOI
4 J. J. Sun, J. Y. Tsai, and C. M. Osburn, IEEE Trans. Electron Devices, 45(9), 1946 (1998)   DOI   ScienceOn
5 J. Y. Dai, Z. R. Guo, S. F. Tee, C. L. Tay, E. Er, and S. Redkar, Appl. Phys. Lett., 78, 3091 (2001)   DOI   ScienceOn
6 F. Hong and G. A. Rozgonyi, J.Electrochem. Soc., 141, 3480 (1994)   DOI
7 C. Y. Kang, D. G. Kang, and J. W. Lee, J. Appl. Phys., 86, 5293 (1999)   DOI
8 C. M. Osburn, J. Y. Tsai and J. Sun, J. Electron Material, 25, 1725 (1996)   DOI
9 C. G. Bucher, and U. Bourgund, Structural Safety, 7, 57 (1990)   DOI   ScienceOn
10 F. Hong, G. A. Rozgonyi, and B. K. Patnaik, Appl. Phys. Lett., 61, 1519 (1992)   DOI
11 H. Fang, M. C. Oztu, E. G. Seebauer, and D. E. Batchelor, J. Electrochem. Soc., 146, 4240 (1999)   DOI
12 J. Lutze, G. Scott, and M. Manley, IEEE Electron Device Lett., 21, 155 (2000)   DOI   ScienceOn
13 A. H. Langner, E. N. Loredo, D. C. Montgomery, A. H. Griffin, Robotics and Computer Integrated Manufacturing, 16, 377 (2000)   DOI   ScienceOn