Browse > Article
http://dx.doi.org/10.3740/MRSK.2003.13.1.031

OES Analysis for Diamond Film Growth by Vapor Activation Method Using CH3OH/H2O Gas  

Lee, Kwon-Jai (Department of Physics, Soongsil University)
Koh, Jae-Gui (Department of Physics, Soongsil University)
Shin, Jae-Soo (Department of Electronic Materials Science, Daejoen University)
Publication Information
Korean Journal of Materials Research / v.13, no.1, 2003 , pp. 31-35 More about this Journal
Abstract
The intensity is measured as functions of both distance from filament to substrate and $CH_3$OH/($CH_3$OH+$H_2$O) ratio by OES(Optical Emission Spectroscopy) to investigate the effects of activation species such as $H_{\alpha}$, $H_{\beta}$, H$\Upsilon\;C_3$, CH on diamond film growth.$ H_{\alpha}$ increases as $CH_3$OH composition decreases, while CH increases as $CH_3$OH composition increases. The intensity of $H_{\alpha}$ decreases as the distance increases and that of CH increases as the distance increases. The intensities of other activation species of $H_{\beta}$, H$\Upsilon\;C_3$, do not vary as a function of measured position distance. It varies randomly. It means that various parameters for depositing diamond thin film can be explained by the intensity(density) change of activation species, as a function of the distance of the filament.
Keywords
HFCVD method; diamond film; OES; $H_{\alpha}$; $H_{\beta}$; $H_{\gamma}$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Liao Y, Chang C, Li CH, Ye ZY, Wang GZ and Fang RC, Thin Solid Films, 368, 303 (2000)   DOI   ScienceOn
2 S. Matsumoto, M. Hino, Y. Moriyoshi, T. Nagashima and Tsutsmui, U. S. Patent 4767608 (1988)
3 P. Badziagm, W. S. Verwoerd, W. P. Ellis and N. R. Greiner, Nature, 343, 244 (1990)   DOI
4 N. M. Hwang, H. W. Bahng and D. Y. Yoon, Diamond and Relat. Mater., 1, 191 (1992)   DOI   ScienceOn
5 Y. Muranaka, H. Yamashita, K. Sato and H. Miyadera, J. Appl. Phys., 67, 6247 (1990)   DOI
6 S. Matumoto, J. Mater. Sci. Lett., 4, 600 (1985)   DOI
7 L. R. Martin and M. W. Hill, Appl. Phys. Lett., 55, 2248 (1989)   DOI
8 S. J. Harris, A. M. Weiner and T. A. Perry, Appl. Phys. Lett., 53, 1605 (1988)   DOI
9 N. M. Hwang, J. H. Hahn and D. Y. Yoon, J. Cryst. Growth, 160, 87 (1996)   DOI   ScienceOn
10 E. H. Wahl, T. G. Owano, C. H. Kruger, P. Zalicki, Y. Ma and R. N. Zare, Diamond and Relat. Mater., 5, 373 (1996)   DOI   ScienceOn
11 R. S. Tsang, C. A. Rego, P. W. May, M. N. R. Ashfold and K. N. Rosser, Diamond and Relat. Mater., 6, 247 (1997)   DOI   ScienceOn
12 L. Schafer, C. P. Klages, U. Meier and K. Kohse-Hoinhaus, Appl. Phys. Lett., 58, 571 (1991)   DOI
13 F. G. Celii and J. E. Butler, Appl. Phys. Lett., 54, 1031 (1989)   DOI
14 M. Frenklach and K. E. Spear, J. Mater. Res., 3, 133 (1988)   DOI
15 T. Kawato and K. Kanda, Jpn. J. Appl. Phys., 26, 1429 (1987)   DOI
16 G. Balestrino, M. Marinell, E. Milani, A. Paoletti, P. Paroli, I. Printer and A.Tebano, Diamond and Relat. Mater., 2, 389 (1993)   DOI   ScienceOn
17 H. Barankova, L. Bardos and S. Bergr, Diamond and Relat. Mater., 2, 347 (1993)   DOI   ScienceOn
18 R. S. Tsang, P. W. May and M. N. R. Ashfold, Diamond and Relat. Mater., 8, 242 (1999)   DOI   ScienceOn
19 K. J. Lee and J. G. Koh, Koh. J. Mater. Res., 11, 1024 (2001)
20 Y. Matsui and M. Sahara, Jpn. J. Appl. Phys. 28, 1023 (1989)   DOI
21 K. C. Pandey, Phys. Rev., B25, 4338 (1992)
22 M. Flenklach, J. Appl. Phys., 65, 5142 (1989)   DOI