Browse > Article
http://dx.doi.org/10.3740/MRSK.2003.13.10.645

Influence of Dy2O3 Addition on Microstructure and Electrical Properties of Pr6O11 Varistor Ceramics  

Nahm, Choon-Woo (Department of Electrical Engineering, Dongeui University)
Park, Jong-Ah (Department of Electrical Engineering, Dongeui University)
Publication Information
Korean Journal of Materials Research / v.13, no.10, 2003 , pp. 645-650 More about this Journal
Abstract
The microstructure and electrical characteristics of $Pr_{6}$ $O_{11}$ -based ZnO varistor ceramics composed of $ZnO-Pr_{6}$ $O_{ 11}$/$-CoO-Cr_2$$O_3$-$Dy_2$$O_3$-based ceramics were investigated with $Dy_2$$O_3$content in the range of 0.0∼2.0 mol%. As $Dy_2$$O_3$content was increased, the average grain size was decreased in the range of 18.6∼4.7 $\mu\textrm{m}$ and the density of the ceramic was decreased in the range of 5.53∼4.34 g/㎤. While, the varistor voltage was increased in the range of 39.4∼436.6 V/mm and the nonlinear exponent was in the range of 4.5∼66.6 with increasing $Dy_2$$O_3$content. The addition of $Dy_2$$O_3$highly enhanced the nonlinear properties of varistors, compared with the varistor without $Dy_2$$O_3$. In particular, the varistor with $Dy_2$$O_3$ content of 0.5 mol% exhibited the highest nonlinearity, in which the nonlinear exponent is 66.6 and the leakage current is 1.2 $\mu\textrm{A}$. The donor concentration and the density of interface states were decreased in the range of $(4.19∼0.33) ${\times}$10^{18}$ //㎤ and $(5.38∼1.74) ${\times}$10^{12}$ $\textrm{cm}^2$, respectively, with increasing $Dy_2$$O_3$content. The minimum dissipation factor of 0.0302 was obtained from 0.5mol% $Dy_2$$O_3$.
Keywords
Microstructure; ${Pr_6}{O_{11}}$-based ZnO varistor; ${Dy_2}{O_3}$; Nonlinear properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C.-W. Nahm and H.-S. Kim, Mater. Lett., 57, 1544 (2003)   DOI   ScienceOn
2 C.-W. Nahm and H.-S. Kim, Mater. Lett., 56, 379 (2002)   DOI   ScienceOn
3 Y.-S. Lee, K.-S. Liao and T.-Y. Tseng, J. Amer. Ceram. Soc, 79, 2379 (1996)   DOI   ScienceOn
4 C.-W. Nahm and C.-H. Park, J. Mater. Sci., 35, 3037 (2000)   DOI   ScienceOn
5 C.-W. Nahm, Mater. Lett., 47, 182 (2001)   DOI   ScienceOn
6 C.-W. Nahm, Y.-C. Jung, H.-S. Kim, J. of KIEEME (in Korean), 15, 244 (2002)
7 A. B. Alles and V. L. Burdick, J. Appl. Phys., 70, 6883 (1991)   DOI
8 C.-W. Nahm, H.-S. Kim, J. of KIEEME (in Korean), 15, 664 (2002)
9 C.-W. Nahm and B.-C. Shin, Sci.: J. Mater. Sci.: Mater. Electron., 13, 111 (2002)   DOI   ScienceOn
10 C.-W. Nahm and B.-C. Shin, Mater. Lett., 57, 1322 (2003)   DOI   ScienceOn
11 C.-W. Nahm, Mater. Lett., 57, 1317 (2003)   DOI   ScienceOn
12 T. K. Gupta, J. Amer. Ceram. Soc, 73, 1817 (1990)   DOI
13 C.-W. Nahm, J. Mater. Sci. Lett., 21, 201 (2002)   DOI   ScienceOn
14 S. Shichimiya, M. Yamaguchi, N. Furuse, M. Kobayashi and S. Ishibe, IEEE Trans. Pow. Deliv. 13, 465 (1998)   DOI   ScienceOn
15 J. C. Wurst and J. A. Nelson, J. Amer. Ceram. Soc, 55, 109 (1972)   DOI
16 K. Mukae, K. Tsuda and I. Nagasawa, J. Appl. Phys., 50, 4475 (1979)   DOI
17 L. Hozer, Semiconductor ceramics; grain boundary effects, Ellis Horwood, 21 (1994)
18 C.-W. Nahm, Y.-C. Jung, Kor. J. Mat. Res., 7, 1033 (1997)
19 L. M. Levinson and H. R. Philipp, Amer. Ceram. Soc. Bull., 65, 639 (1986)
20 A. B. Alles, R. Puskas, G. Callahan and V. L. Burdick, J. Amer. Ceram. Soc., 76, 2098 (1993)   DOI   ScienceOn
21 L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull., 65, 639 (1986)
22 G. D. Mahan, J. Appl. Phys., 54, 3825 (1983)   DOI   ScienceOn
23 C.-W. Nahm, H.-S. Kim, J. of KIEEME (in Korean), 15, 776 (2002)